rdfs:comment
| - L'équation de Burgers est une équation aux dérivées partielles issue de la mécanique des fluides. Elle apparaît dans divers domaines des mathématiques appliquées, comme la modélisation de la dynamique des gaz, de l'acoustique ou du trafic routier. Elle doit son nom à Johannes Martinus Burgers qui l'a discutée en 1948. Elle apparaît dans des travaux antérieurs de Andrew Russel Forsyth et Harry Bateman. (fr)
- 버거스 방정식(Burgers’ equation)은 얀 버거스가 만든 편미분방정식이다. 점성이 있는 버전, 점성이 없는 버전, 보존력 버전이 있다. 점성이 없는 방정식은 충격파가 발생한다. (ko)
- 物理学、特に流体力学においてバーガース方程式(バーガースほうていしき、英: Burgers equation)とは、一次元の非線形波動を記述する二階偏微分方程式。 (ja)
- Równanie Burgersa – jedno z fundamentalnych równań różniczkowych cząstkowych mechaniki płynów. Występuje w wielu dziedzinach matematyki i fizyki, np. w modelach dynamiki gazów i ruchu ulicznego. Nazwa równania upamiętnia holenderskiego fizyka Johannesa Martinusa Burgersa (1895–1981), który jako pierwszy badał to równanie. (pl)
- Burgers ekvation är en icke-linjär partiell differentialekvation namngiven efter den holländske fysikern . Det är en fundamental ekvation inom flödesdynamik och används bland annat vid studiet av gasdynamik och modellering av . Den allmänna formen för Burgers ekvation där är hastigheten och är viskositetkoefficienten ges av: Ett specialfall av ekvationen utan den viskösa termen är en första ordningens partiell differentialekvation: Ekvationen används ofta som en modellekvation för studiet av hyperboliska partiella differentialekvationer. (sv)
- 伯格斯方程(Burgers equation)是一个模拟冲击波的传播和反射的非线性偏微分方程: (zh)
- L'equació de Burgers o equació de Bateman-Burgers és una equació diferencial en derivades parcials fonamental que passa en diverses àrees de la matemàtica aplicada, com la mecànica dels fluids, l', la dinàmica de gasos i el flux de trànsit. L'equació va ser introduïda per primera vegada per Harry Bateman el 1915 i després estudiada per el 1948. Quan el terme de difusió està absent, és a dir, quan , l'equació de Burgers es converteix en l' «equació de Burgers no viscosa»: (ca)
- Burgersova rovnice je jednou ze základních parciálních diferenciálních rovnic mechaniky tekutin. Objevuje se v mnoha partiích aplikované matematiky, jako je například a modelování dopravního toku. Rovnice je pojmenována po (1895–1981). Je ekvivalentní Navierově-Stokesově rovnici pro nestlačitelný tok bez tlakového členu. Pro danou rychlost and je obecný tvar jednorozměrné Burgersovy rovnice (rovněž známé pod pojmem vazká Burgesova rovnice) tvaru: . Je-li , Burgersova rovnice se stává nevazkou Burgersovou rovnicí: (cs)
- Die Burgersgleichung (nach dem niederländischen Physiker Johannes Martinus Burgers) ist eine einfache nichtlineare partielle Differentialgleichung zweiter Ordnung für eine Funktion von zwei Variablen Sie tritt in verschiedenen Gebieten der angewandten Mathematik auf. In allgemeiner Form sieht die Gleichung folgendermaßen aus (auch viskose Burgersgleichung genannt): Der Parameter kann hier als Viskositätsparameter interpretiert werden. (de)
- Burgers' equation or Bateman–Burgers equation is a fundamental partial differential equation and convection–diffusion equation occurring in various areas of applied mathematics, such as fluid mechanics, nonlinear acoustics, gas dynamics, and traffic flow. The equation was first introduced by Harry Bateman in 1915 and later studied by Johannes Martinus Burgers in 1948. When the diffusion term is absent (i.e. ), Burgers' equation becomes the inviscid Burgers' equation: (en)
- La ecuación de Burgers o ecuación de Bateman-Burgers es una ecuación diferencial parcial fundamental que ocurre en varias áreas de la matemática aplicada, como la mecánica de fluidos, la acústica no lineal, la dinámica de gases y el flujo de tráfico. La ecuación fue introducida por primera vez por en 1915 y luego estudiada por en 1948. Cuando el término de difusión está ausente es decir, cuando , la «ecuación de Burgers» se convierte en la «ecuación de Burgers inviscida»: (es)
- In matematica, l'equazione di Burgers, il cui nome si deve a , è un'equazione differenziale alle derivate parziali fondamentale per la meccanica dei fluidi, e utile anche in numerose aree della matematica applicata, quali la modellazione della gasdinamica e del flusso del traffico. Per una data funzione di due variabili, la forma generale dell'equazione di Burgers è: Quando , l'equazione diventa inviscida: (it)
- De Burgersvergelijking is een fundamentele partiële differentiaalvergelijking uit de vloeistofdynamica. De vergelijking treedt op in diverse gebieden van de toegepaste wiskunde, zoals de modellering van en verkeersstromen en beschrijft daarin een eendimensionale stroming. De vergelijking is genoemd naar de Nederlandse natuurkundige Johannes Martinus Burgers (1895-1981). De algemene vorm van de Burgersvergelijking is: . Hierin is de viscositeitscoëfficiënt. Als , gaat de Burgersvergelijking over in de volgende basisvorm: . (nl)
- Уравнением Бюргерса называют уравнение в частных производных. Это уравнение известно в различных областях прикладной математики. Уравнение названо в честь Иоганна Мартинуса Бюргерса (1895—1981). Является частным случаем уравнений Навье — Стокса в одномерном случае. В гидродинамике уравнение вводится так: пусть задана скорость течения жидкости u и её кинематическая вязкость . Тогда в общем виде уравнение Бюргерса записывается так: . Если влиянием вязкости можно пренебречь, то есть , уравнение приобретает вид: . . (ru)
- Рівнянням Бюргерса називають нелінійне диференціальне рівняння в часткових похідних, що використовується в гідродинаміці. Це рівняння відоме в різних областях прикладної математики. Рівняння названо на честь Йоганнеса Мартінуса Бюргерса (1895—1981). Є окремим випадком рівнянь Нав'є — Стокса в одновимірному випадку. Нехай задана швидкість течії рідини u та її кінематична в'язкість . Рівняння Бюргерса в загальному вигляді записується так: . (uk)
|