About: CAT(k) space     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : owl:Thing, within Data Space : dbpedia.demo.openlinksw.com associated with source document(s)
QRcode icon
http://dbpedia.demo.openlinksw.com/c/3EsFoFQCrw

In mathematics, a space, where is a real number, is a specific type of metric space. Intuitively, triangles in a space are "slimmer" than corresponding "model triangles" in a standard space of constant curvature . In a space, the curvature is bounded from above by . A notable special case is ; complete spaces are known as "Hadamard spaces" after the French mathematician Jacques Hadamard.

AttributesValues
rdfs:label
  • CAT(k) space (en)
  • Espace de Cartan-Alexandrov-Toponogov (fr)
  • CAT(κ) 공간 (ko)
rdfs:comment
  • Les espaces de Cartan-Alexandrov-Toponogov ou espaces CAT(k) sont utilisés en géométrie. Ils permettent de définir dans le cadre des espaces métriques une notion de courbure qui relève traditionnellement de la géométrie riemannienne, par le truchement de relations de comparaison dans les triangles géodésiques. Le paramètre k est un réel qui permet de quantifier cette comparaison : on peut ainsi dire de certains espaces métriques qu'ils forment un espace CAT(k) pour un réel k donné. Les espaces CAT ont été dénommés ainsi par le géomètre Mikhail Gromov pour honorer les mathématiciens Élie Cartan, Alexandre Alexandrov et (en). (fr)
  • 기하학에서 CAT(κ) 공간(-空間, 영어: CAT(κ) space)은 단면 곡률이 어디서나 이하인 거리 공간이다. (ko)
  • In mathematics, a space, where is a real number, is a specific type of metric space. Intuitively, triangles in a space are "slimmer" than corresponding "model triangles" in a standard space of constant curvature . In a space, the curvature is bounded from above by . A notable special case is ; complete spaces are known as "Hadamard spaces" after the French mathematician Jacques Hadamard. (en)
foaf:depiction
  • http://commons.wikimedia.org/wiki/Special:FilePath/End_of_universe.jpg
  • http://commons.wikimedia.org/wiki/Special:FilePath/Median_diagram.svg
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Link from a Wikipage to an external page
sameAs
dbp:wikiPageUsesTemplate
thumbnail
has abstract
  • In mathematics, a space, where is a real number, is a specific type of metric space. Intuitively, triangles in a space are "slimmer" than corresponding "model triangles" in a standard space of constant curvature . In a space, the curvature is bounded from above by . A notable special case is ; complete spaces are known as "Hadamard spaces" after the French mathematician Jacques Hadamard. Originally, Aleksandrov called these spaces “ domain”.The terminology was coined by Mikhail Gromov in 1987 and is an acronym for Élie Cartan, Aleksandr Danilovich Aleksandrov and Victor Andreevich Toponogov (although Toponogov never explored curvature bounded above in publications). (en)
  • Les espaces de Cartan-Alexandrov-Toponogov ou espaces CAT(k) sont utilisés en géométrie. Ils permettent de définir dans le cadre des espaces métriques une notion de courbure qui relève traditionnellement de la géométrie riemannienne, par le truchement de relations de comparaison dans les triangles géodésiques. Le paramètre k est un réel qui permet de quantifier cette comparaison : on peut ainsi dire de certains espaces métriques qu'ils forment un espace CAT(k) pour un réel k donné. Les espaces CAT ont été dénommés ainsi par le géomètre Mikhail Gromov pour honorer les mathématiciens Élie Cartan, Alexandre Alexandrov et (en). (fr)
  • 기하학에서 CAT(κ) 공간(-空間, 영어: CAT(κ) space)은 단면 곡률이 어디서나 이하인 거리 공간이다. (ko)
prov:wasDerivedFrom
page length (characters) of wiki page
foaf:isPrimaryTopicOf
is Link from a Wikipage to another Wikipage of
Faceted Search & Find service v1.17_git147 as of Sep 06 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3331 as of Sep 2 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (378 GB total memory, 53 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software