In mathematics, the Chowla–Selberg formula is the evaluation of a certain product of values of the gamma function at rational values in terms of values of the Dedekind eta function at imaginary quadratic irrational numbers. The result was essentially found by Lerch and rediscovered by Chowla and Selberg .
Attributes | Values |
---|
rdf:type
| |
rdfs:label
| - Fórmula de Chowla-Selberg (ca)
- Chowla–Selberg formula (en)
- Formule de Chowla-Selberg (fr)
- チョウラ=セルバーグの公式 (ja)
|
rdfs:comment
| - En matemàtiques, la fórmula Chowla-Selberg expressa períodes d'algunes corbes el·líptiques, com l'equació o , com el producte dels valors de la funció gamma a valors racionals en termes de valors de la funció eta de Dedekind a nombres irracionals quadràtics imaginaris. El resultat va ser trobat essencialment per Lerch (1897), i per Chowla i Selberg (1949, 1967). (ca)
- In mathematics, the Chowla–Selberg formula is the evaluation of a certain product of values of the gamma function at rational values in terms of values of the Dedekind eta function at imaginary quadratic irrational numbers. The result was essentially found by Lerch and rediscovered by Chowla and Selberg . (en)
- 数学におけるチョウラ=セルバーグの公式(チョウラ=セルバーグのこうしき、英: Chowla–Selberg formula)とは、複素二次無理数でのデデキントのイータ関数の値の意味での有理値におけるガンマ関数の値の積を評価するものである。元々は1897年にマティアス・レルヒによって発見され、1949年にサルバダマン・チョウラ、1967年にアトル・セルバーグによって再発見された。 (ja)
- En mathématiques, la formule de Chowla-Selberg exprime les périodes de certaines courbes elliptiques (à multiplication complexe) comme celles d'équation ou comme un produit de valeurs de la fonction gamma aux nombres rationnels. Le nom provient d'un papier commun de 1967 des mathématiciens Sarvadaman Chowla et Atle Selberg, mais le résultat était déjà plus ou moins contenu dans un travail du mathématicien tchèque Mathias Lerch. La démonstration relève de la théorie des fonctions L ; plus précisément, la formule résulte de deux manières d'évaluer la somme (fr)
|
dcterms:subject
| |
Wikipage page ID
| |
Wikipage revision ID
| |
Link from a Wikipage to another Wikipage
| |
sameAs
| |
dbp:wikiPageUsesTemplate
| |
has abstract
| - En matemàtiques, la fórmula Chowla-Selberg expressa períodes d'algunes corbes el·líptiques, com l'equació o , com el producte dels valors de la funció gamma a valors racionals en termes de valors de la funció eta de Dedekind a nombres irracionals quadràtics imaginaris. El resultat va ser trobat essencialment per Lerch (1897), i per Chowla i Selberg (1949, 1967). (ca)
- In mathematics, the Chowla–Selberg formula is the evaluation of a certain product of values of the gamma function at rational values in terms of values of the Dedekind eta function at imaginary quadratic irrational numbers. The result was essentially found by Lerch and rediscovered by Chowla and Selberg . (en)
- En mathématiques, la formule de Chowla-Selberg exprime les périodes de certaines courbes elliptiques (à multiplication complexe) comme celles d'équation ou comme un produit de valeurs de la fonction gamma aux nombres rationnels. Le nom provient d'un papier commun de 1967 des mathématiciens Sarvadaman Chowla et Atle Selberg, mais le résultat était déjà plus ou moins contenu dans un travail du mathématicien tchèque Mathias Lerch. La démonstration relève de la théorie des fonctions L ; plus précisément, la formule résulte de deux manières d'évaluer la somme en utilisant la formule de Lerch pour évaluer des fonctions L de Dirichlet en s=0 et la loi de réciprocité quadratique de Gauss pour factoriser une fonction L comme produit de deux fonctions L de Dirichlet. Ici χ est le symbole de Jacobi modulo D, où -D est le discriminant de l'anneau des entiers d'un corps quadratique imaginaire. La somme est prise sur 0 < r < D, avec la convention usuelle χ(r) = 0 si r et D ont un facteur commun. Cette formule relève de la théorie des périodes des variétés abéliennes de type CM ; elle a eu beaucoup généralisations. En particulier, elle a un analogue p-adique, la (en), qui met en jeu une (en). (fr)
- 数学におけるチョウラ=セルバーグの公式(チョウラ=セルバーグのこうしき、英: Chowla–Selberg formula)とは、複素二次無理数でのデデキントのイータ関数の値の意味での有理値におけるガンマ関数の値の積を評価するものである。元々は1897年にマティアス・レルヒによって発見され、1949年にサルバダマン・チョウラ、1967年にアトル・セルバーグによって再発見された。 (ja)
|
gold:hypernym
| |
prov:wasDerivedFrom
| |
page length (characters) of wiki page
| |
foaf:isPrimaryTopicOf
| |
is Link from a Wikipage to another Wikipage
of | |
is Wikipage redirect
of | |
is known for
of | |
is known for
of | |
is foaf:primaryTopic
of | |