About: Cipolla's algorithm     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : yago:Rule105846932, within Data Space : dbpedia.demo.openlinksw.com associated with source document(s)
QRcode icon
http://dbpedia.demo.openlinksw.com/c/57NjMVikJA

In computational number theory, Cipolla's algorithm is a technique for solving a congruence of the form where , so n is the square of x, and where is an odd prime. Here denotes the finite field with elements; . The algorithm is named after Michele Cipolla, an Italian mathematician who discovered it in 1907. Apart from prime moduli, Cipolla's algorithm is also able to take square roots modulo prime powers.

AttributesValues
rdf:type
rdfs:label
  • Cipolla's algorithm (en)
  • Алгоритм Чиполлы (ru)
rdfs:comment
  • In computational number theory, Cipolla's algorithm is a technique for solving a congruence of the form where , so n is the square of x, and where is an odd prime. Here denotes the finite field with elements; . The algorithm is named after Michele Cipolla, an Italian mathematician who discovered it in 1907. Apart from prime moduli, Cipolla's algorithm is also able to take square roots modulo prime powers. (en)
  • Алгоритм Чиполлы — это техника решения конгруэнтного уравнения вида где , так что n будет квадратом числа x, и где является нечётным простым числом. Здесь обозначает конечное поле с элементами . Алгоритм носит имя итальянского математика , открывшего метод в 1907. (ru)
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
sameAs
dbp:wikiPageUsesTemplate
has abstract
  • In computational number theory, Cipolla's algorithm is a technique for solving a congruence of the form where , so n is the square of x, and where is an odd prime. Here denotes the finite field with elements; . The algorithm is named after Michele Cipolla, an Italian mathematician who discovered it in 1907. Apart from prime moduli, Cipolla's algorithm is also able to take square roots modulo prime powers. (en)
  • Алгоритм Чиполлы — это техника решения конгруэнтного уравнения вида где , так что n будет квадратом числа x, и где является нечётным простым числом. Здесь обозначает конечное поле с элементами . Алгоритм носит имя итальянского математика , открывшего метод в 1907. (ru)
prov:wasDerivedFrom
page length (characters) of wiki page
foaf:isPrimaryTopicOf
is Link from a Wikipage to another Wikipage of
is Wikipage disambiguates of
is foaf:primaryTopic of
Faceted Search & Find service v1.17_git147 as of Sep 06 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3331 as of Sep 2 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (378 GB total memory, 52 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software