About: Computable isomorphism     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : owl:Thing, within Data Space : dbpedia.demo.openlinksw.com associated with source document(s)
QRcode icon
http://dbpedia.demo.openlinksw.com/c/4KjZo7wEXT

In computability theory two sets of natural numbers are computably isomorphic or recursively isomorphic if there exists a total bijective computable function with . By the Myhill isomorphism theorem, the relation of computable isomorphism coincides with the relation of mutual one-one reducibility. Two numberings and are called computably isomorphic if there exists a computable bijection so that Computably isomorphic numberings induce the same notion of computability on a set.

AttributesValues
rdfs:label
  • Rekursive Isomorphie (de)
  • Computable isomorphism (en)
rdfs:comment
  • Rekursive Isomorphie ist in der Berechenbarkeitstheorie eine Äquivalenzrelation auf Mengen natürlicher Zahlen. (de)
  • In computability theory two sets of natural numbers are computably isomorphic or recursively isomorphic if there exists a total bijective computable function with . By the Myhill isomorphism theorem, the relation of computable isomorphism coincides with the relation of mutual one-one reducibility. Two numberings and are called computably isomorphic if there exists a computable bijection so that Computably isomorphic numberings induce the same notion of computability on a set. (en)
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
sameAs
dbp:wikiPageUsesTemplate
date
  • June 2021 (en)
reason
  • f is a function on naturals, not on sets of naturals, so what is f? (en)
has abstract
  • Rekursive Isomorphie ist in der Berechenbarkeitstheorie eine Äquivalenzrelation auf Mengen natürlicher Zahlen. (de)
  • In computability theory two sets of natural numbers are computably isomorphic or recursively isomorphic if there exists a total bijective computable function with . By the Myhill isomorphism theorem, the relation of computable isomorphism coincides with the relation of mutual one-one reducibility. Two numberings and are called computably isomorphic if there exists a computable bijection so that Computably isomorphic numberings induce the same notion of computability on a set. (en)
prov:wasDerivedFrom
page length (characters) of wiki page
foaf:isPrimaryTopicOf
is Link from a Wikipage to another Wikipage of
is Wikipage redirect of
is foaf:primaryTopic of
Faceted Search & Find service v1.17_git147 as of Sep 06 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3332 as of Dec 5 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (378 GB total memory, 56 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software