About: Coreshine     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : yago:WikicatPre-stellarCores, within Data Space : dbpedia.demo.openlinksw.com associated with source document(s)
QRcode icon
http://dbpedia.demo.openlinksw.com/c/5JvvKJUjNZ

Coreshine is an astronomical term for infrared light scattered by unusually large grains of dust in the denser core regions of molecular clouds and which evidently begin their growth before the start of cloud collapse. These clouds which are opaque to visible light, are a mixture of gas and dust and are the regions where stars are formed. Coreshine will lead to new projects for both the Spitzer and James Webb Space Telescope, the latter of which is due to be launched in 2021.

AttributesValues
rdf:type
rdfs:label
  • Coreshine (en)
rdfs:comment
  • Coreshine is an astronomical term for infrared light scattered by unusually large grains of dust in the denser core regions of molecular clouds and which evidently begin their growth before the start of cloud collapse. These clouds which are opaque to visible light, are a mixture of gas and dust and are the regions where stars are formed. Coreshine will lead to new projects for both the Spitzer and James Webb Space Telescope, the latter of which is due to be launched in 2021. (en)
foaf:depiction
  • http://commons.wikimedia.org/wiki/Special:FilePath/%22Coreshine%22_in_the_L183_Dark_Cloud.jpg
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Link from a Wikipage to an external page
sameAs
dbp:wikiPageUsesTemplate
thumbnail
date
title
  • Coreshine from a Dark Cloud (en)
has abstract
  • Coreshine is an astronomical term for infrared light scattered by unusually large grains of dust in the denser core regions of molecular clouds and which evidently begin their growth before the start of cloud collapse. These clouds which are opaque to visible light, are a mixture of gas and dust and are the regions where stars are formed. Coreshine offers a new tool for observing the earliest phases of star formation, a process effectively hidden up to now. The scattered mid-infrared light, found throughout our galaxy, could reveal the origins of the cloud material, the size and density of the dust particles, the age of the core region, the distribution of the dust and gas, and the chemical processes taking place deep inside the cloud. The phenomenon was first studied seriously with NASA’s Spitzer Space Telescope. Researchers Laurent Pagani (CNRS, Paris Observatory), Jürgen Steinacker (Max Planck Institute for Astronomy) and colleagues from the California Institute of Technology and Laboratoire d’Astrophysique de l’Observatoire de Grenoble, discovered surprisingly bright mid-infrared radiation from the core of the molecular cloud L183 in the constellation Serpens Cauda 360 light-years away. Using computer simulations, it became clear that they were observing light scattered by particles of around 1 micrometer in diameter. In a follow-up they studied 110 molecular clouds, at distances between 300 and 1300 light-years, and which had been part of previous Spitzer surveys. The results showed that coreshine is a widespread phenomenon and was present in about half the clouds studied. Clouds in the southern constellation Vela show no coreshine and it is thought that this has been brought about by recorded supernova explosions in the region, blowing away or destroying larger dust particles. Coreshine will lead to new projects for both the Spitzer and James Webb Space Telescope, the latter of which is due to be launched in 2021. (en)
gold:hypernym
prov:wasDerivedFrom
page length (characters) of wiki page
foaf:isPrimaryTopicOf
is Link from a Wikipage to another Wikipage of
is foaf:primaryTopic of
Faceted Search & Find service v1.17_git147 as of Sep 06 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3331 as of Sep 2 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (378 GB total memory, 50 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software