About: Darboux's formula     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : yago:PsychologicalFeature100023100, within Data Space : dbpedia.demo.openlinksw.com associated with source document(s)
QRcode icon
http://dbpedia.demo.openlinksw.com/c/66mhwpXBBb

In mathematical analysis, Darboux's formula is a formula introduced by Gaston Darboux for summing infinite series by using integrals or evaluating integrals using infinite series. It is a generalization to the complex plane of the Euler–Maclaurin summation formula, which is used for similar purposes and derived in a similar manner (by repeated integration by parts of a particular choice of integrand). Darboux's formula can also be used to derive the Taylor series from calculus.

AttributesValues
rdf:type
rdfs:label
  • Darbouxův vzorec (cs)
  • Darboux's formula (en)
rdfs:comment
  • Darbouxův vzorec je v matematické analýze vzorec, který objevil Jean Gaston Darboux pro sumaci nekonečné řady pomocí integrálů nebo vyhodnocování integrálů pomocí nekonečné řady. Je zobecněním Eulerova–Maclaurinova sumačního vzorce na komplexní rovinu. Ten se používá pro podobné účely a odvozuje se podobným způsobem (opakovanou integrací per partes určité volby integrálu). Darbouxův vzorec lze použít pro odvození Taylorovy řady v infinitezimálním počtu. (cs)
  • In mathematical analysis, Darboux's formula is a formula introduced by Gaston Darboux for summing infinite series by using integrals or evaluating integrals using infinite series. It is a generalization to the complex plane of the Euler–Maclaurin summation formula, which is used for similar purposes and derived in a similar manner (by repeated integration by parts of a particular choice of integrand). Darboux's formula can also be used to derive the Taylor series from calculus. (en)
differentFrom
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Link from a Wikipage to an external page
sameAs
dbp:wikiPageUsesTemplate
authorlink
  • Jean Gaston Darboux (en)
date
  • March 2022 (en)
first
  • Gaston (en)
last
  • Darboux (en)
reason
  • This could only be true if a proof of Darboux's formula that DOES NOT RELY on the Taylor series, since otherwise such a proof deriving the Taylor series would be circular. Is it actually the case that Darboux's formula does not use the Taylor series? (en)
year
has abstract
  • Darbouxův vzorec je v matematické analýze vzorec, který objevil Jean Gaston Darboux pro sumaci nekonečné řady pomocí integrálů nebo vyhodnocování integrálů pomocí nekonečné řady. Je zobecněním Eulerova–Maclaurinova sumačního vzorce na komplexní rovinu. Ten se používá pro podobné účely a odvozuje se podobným způsobem (opakovanou integrací per partes určité volby integrálu). Darbouxův vzorec lze použít pro odvození Taylorovy řady v infinitezimálním počtu. (cs)
  • In mathematical analysis, Darboux's formula is a formula introduced by Gaston Darboux for summing infinite series by using integrals or evaluating integrals using infinite series. It is a generalization to the complex plane of the Euler–Maclaurin summation formula, which is used for similar purposes and derived in a similar manner (by repeated integration by parts of a particular choice of integrand). Darboux's formula can also be used to derive the Taylor series from calculus. (en)
gold:hypernym
prov:wasDerivedFrom
page length (characters) of wiki page
foaf:isPrimaryTopicOf
is Link from a Wikipage to another Wikipage of
is Wikipage redirect of
is foaf:primaryTopic of
Faceted Search & Find service v1.17_git147 as of Sep 06 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3331 as of Sep 2 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (378 GB total memory, 52 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software