About: De Franchis theorem     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : yago:WikicatAlgebraicCurves, within Data Space : dbpedia.demo.openlinksw.com associated with source document(s)
QRcode icon
http://dbpedia.demo.openlinksw.com/c/7UZFzK1TYu

In mathematics, the de Franchis theorem is one of a number of closely related statements applying to compact Riemann surfaces, or, more generally, algebraic curves, X and Y, in the case of genus g > 1. The simplest is that the automorphism group of X is finite (see though Hurwitz's automorphisms theorem). More generally, * the set of non-constant morphisms from X to Y is finite; * fixing X, for all but a finite number of such Y, there is no non-constant morphism from X to Y.

AttributesValues
rdf:type
rdfs:label
  • De Franchis theorem (en)
  • Théorème de De Franchis (fr)
rdfs:comment
  • In mathematics, the de Franchis theorem is one of a number of closely related statements applying to compact Riemann surfaces, or, more generally, algebraic curves, X and Y, in the case of genus g > 1. The simplest is that the automorphism group of X is finite (see though Hurwitz's automorphisms theorem). More generally, * the set of non-constant morphisms from X to Y is finite; * fixing X, for all but a finite number of such Y, there is no non-constant morphism from X to Y. (en)
  • En mathématiques, le théorème de Franchis est u ensemble d'énoncés sur les surfaces de Riemann compactes, et, plus généralement, aux courbes algébriques, X et Y, dans le cas du genre g > 1. La plus simple est que le groupe d'automorphismes de X est fini (voir cependant le théorème des automorphismes de Hurwitz). Plus généralement, * l'ensemble des morphismes non constants de X vers Y est fini ; * soit X fixé, pour tous sauf un nombre fini de tels Y, il n'y a pas de morphisme non constant de X vers Y. (fr)
dcterms:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
sameAs
dbp:wikiPageUsesTemplate
has abstract
  • In mathematics, the de Franchis theorem is one of a number of closely related statements applying to compact Riemann surfaces, or, more generally, algebraic curves, X and Y, in the case of genus g > 1. The simplest is that the automorphism group of X is finite (see though Hurwitz's automorphisms theorem). More generally, * the set of non-constant morphisms from X to Y is finite; * fixing X, for all but a finite number of such Y, there is no non-constant morphism from X to Y. These results are named for Michele De Franchis (1875–1946). It is sometimes referenced as the De Franchis-Severi theorem. It was used in an important way by Gerd Faltings to prove the Mordell conjecture. (en)
  • En mathématiques, le théorème de Franchis est u ensemble d'énoncés sur les surfaces de Riemann compactes, et, plus généralement, aux courbes algébriques, X et Y, dans le cas du genre g > 1. La plus simple est que le groupe d'automorphismes de X est fini (voir cependant le théorème des automorphismes de Hurwitz). Plus généralement, * l'ensemble des morphismes non constants de X vers Y est fini ; * soit X fixé, pour tous sauf un nombre fini de tels Y, il n'y a pas de morphisme non constant de X vers Y. Ces résultats portent le nom de Michele de Franchis (1875-1946). Gerd Faltings en a fait un usage crucial pour démontrer la conjecture de Mordell. (fr)
gold:hypernym
prov:wasDerivedFrom
page length (characters) of wiki page
foaf:isPrimaryTopicOf
is Link from a Wikipage to another Wikipage of
is Wikipage redirect of
is foaf:primaryTopic of
Faceted Search & Find service v1.17_git147 as of Sep 06 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3332 as of Dec 5 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (378 GB total memory, 76 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software