About: Dubner's conjecture     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : owl:Thing, within Data Space : dbpedia.demo.openlinksw.com associated with source document(s)
QRcode icon
http://dbpedia.demo.openlinksw.com/c/8YZdSLzkye

Dubner's conjecture is an as yet (2018) unsolved conjecture by American mathematician Harvey Dubner. It states that every even number greater than 4208 is the sum of two t-primes, where a t-prime is a prime which has a twin. The conjecture is computer-verified for numbers up to . Even numbers that make an exception are: 2, 4, 94, 96, 98, 400, 402, 404, 514, 516, 518, 784, 786, 788, 904, 906, 908, 1114, 1116, 1118, 1144, 1146, 1148, 1264, 1266, 1268, 1354, 1356, 1358, 3244, 3246, 3248, 4204, 4206, 4208.(sequence in the OEIS)

AttributesValues
rdfs:label
  • Conjetura de Dubner (es)
  • Dubner's conjecture (en)
  • Conjecture de Dubner (fr)
rdfs:comment
  • Dubner's conjecture is an as yet (2018) unsolved conjecture by American mathematician Harvey Dubner. It states that every even number greater than 4208 is the sum of two t-primes, where a t-prime is a prime which has a twin. The conjecture is computer-verified for numbers up to . Even numbers that make an exception are: 2, 4, 94, 96, 98, 400, 402, 404, 514, 516, 518, 784, 786, 788, 904, 906, 908, 1114, 1116, 1118, 1144, 1146, 1148, 1264, 1266, 1268, 1354, 1356, 1358, 3244, 3246, 3248, 4204, 4206, 4208.(sequence in the OEIS) (en)
  • La conjecture de Dubner est une conjecture énoncée par Harvey Dubner, mathématicien amateur américain spécialisé dans la recherche de grands nombres premiers, selon laquelle : Si l'on appelle p-jumeau un nombre premier ayant un jumeau, alors tout nombre pair supérieur à 4208 est la somme de deux p-jumeaux. Les nombres pairs qui font exception sont : 2, 4, 94, 96, 98, 400, 402, 404, 514, 516, 518, 784, 786, 788, 904, 906, 908, 1114, 1116, 1118, 1144, 1146, 1148, 1264, 1266, 1268, 1354, 1356, 1358, 3244, 3246, 3248, 4204, 4206, 4208. (fr)
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
sameAs
dbp:wikiPageUsesTemplate
has abstract
  • Dubner's conjecture is an as yet (2018) unsolved conjecture by American mathematician Harvey Dubner. It states that every even number greater than 4208 is the sum of two t-primes, where a t-prime is a prime which has a twin. The conjecture is computer-verified for numbers up to . Even numbers that make an exception are: 2, 4, 94, 96, 98, 400, 402, 404, 514, 516, 518, 784, 786, 788, 904, 906, 908, 1114, 1116, 1118, 1144, 1146, 1148, 1264, 1266, 1268, 1354, 1356, 1358, 3244, 3246, 3248, 4204, 4206, 4208.(sequence in the OEIS) The conjecture, if proved, will prove both the Goldbach's conjecture (because it has already been verified that all the even numbers 2n, such that 2 < 2n ≤ 4208, are the sum of two primes) and the twin prime conjecture (there exists an infinite number of t-primes, and thus an infinite number of twin prime pairs). Whilst already itself a generalization of both these conjectures, the original conjecture of Dubner may be generalized even further: * For each natural number k > 0, every sufficiently large even number n(k) is the sum of two d(2k)-primes, where a d(2k)-prime is a prime p which has a prime q such that d(p,q) = |q − p| = 2k and p, q successive primes. The conjecture implies the Goldbach's conjecture (for all the even numbers greater than a large value ℓ(k)) for each k, and Polignac's conjecture if we consider all the cases k. The original Dubner's conjecture is the case for k = 1. * The same idea, but p and q are not necessarily consecutive in the definition of a d(2k)-prime. Again, the Dubner's conjecture is a case for k = 1. It implies the Goldbach's conjecture and the (if we consider all the cases k) are concerned. (en)
  • La conjecture de Dubner est une conjecture énoncée par Harvey Dubner, mathématicien amateur américain spécialisé dans la recherche de grands nombres premiers, selon laquelle : Si l'on appelle p-jumeau un nombre premier ayant un jumeau, alors tout nombre pair supérieur à 4208 est la somme de deux p-jumeaux. Les nombres pairs qui font exception sont : 2, 4, 94, 96, 98, 400, 402, 404, 514, 516, 518, 784, 786, 788, 904, 906, 908, 1114, 1116, 1118, 1144, 1146, 1148, 1264, 1266, 1268, 1354, 1356, 1358, 3244, 3246, 3248, 4204, 4206, 4208. Cette conjecture a été vérifiée par logiciel pour tous les nombres pairs jusqu'à . Si cette conjecture était démontrée, cela prouverait à la fois la conjecture de Goldbach (tout nombre pair est la somme de deux nombres premiers) et la conjecture des nombres premiers jumeaux (il existe une infinité de nombres premiers jumeaux). (fr)
prov:wasDerivedFrom
page length (characters) of wiki page
foaf:isPrimaryTopicOf
is Link from a Wikipage to another Wikipage of
is foaf:primaryTopic of
Faceted Search & Find service v1.17_git147 as of Sep 06 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3331 as of Sep 2 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (378 GB total memory, 52 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software