rdfs:comment
| - In mathematics, a formal group law is (roughly speaking) a formal power series behaving as if it were the product of a Lie group. They were introduced by S. Bochner. The term formal group sometimes means the same as formal group law, and sometimes means one of several generalizations. Formal groups are intermediate between Lie groups (or algebraic groups) and Lie algebras. They are used in algebraic number theory and algebraic topology. (en)
- 대수기하학에서, 형식적 군 법칙(形式的群法則, 영어: formal group law)은 리 군의 국소적 곱셈 법칙을 형식적 멱급수로 공리화하여 얻은 대수적 구조이다. 구체적으로, 이는 일종의 결합 법칙을 만족시키는 형식적 멱급수이다. 표수 0의 체의 경우 이 개념은 사실상 리 대수와 동치이나, 다른 표수의 경우 이는 추가 정보를 포함한다. (ko)
- In de algebraïsche getaltheorie, de algebraïsche topologie en de groepentheorie, deelgebieden van de wiskunde, is een formele groepenwet (ruwweg) een , die zich als een product van een Lie-groep gedraagt. De formele groep werden in 1946 door gedefinieerd. De term formele groep betekent soms hetzelfde als de formele groepenwet, en staat soms voor een de verschillende veralgemeningen. Formele groepen zijn tussenvormen tussen Lie-groepen (of algebraïsche groepen) en Lie-algebra's. (nl)
|