About: Fundamental lemma (Langlands program)     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : yago:WikicatAlgebraicGroups, within Data Space : dbpedia.demo.openlinksw.com associated with source document(s)
QRcode icon
http://dbpedia.demo.openlinksw.com/c/81o2u9FJZR

In the mathematical theory of automorphic forms, the fundamental lemma relates orbital integrals on a reductive group over a local field to stable orbital integrals on its endoscopic groups. It was conjectured by Robert Langlands in the course of developing the Langlands program. The fundamental lemma was proved by Gérard Laumon and Ngô Bảo Châu in the case of unitary groups and then by for general reductive groups, building on a series of important reductions made by Jean-Loup Waldspurger to the case of Lie algebras. Time magazine placed Ngô's proof on the list of the "Top 10 scientific discoveries of 2009". In 2010, Ngô was awarded the Fields Medal for this proof.

AttributesValues
rdf:type
rdfs:label
  • Fundamental lemma (Langlands program) (en)
  • Фундаментальна лема (uk)
rdfs:comment
  • In the mathematical theory of automorphic forms, the fundamental lemma relates orbital integrals on a reductive group over a local field to stable orbital integrals on its endoscopic groups. It was conjectured by Robert Langlands in the course of developing the Langlands program. The fundamental lemma was proved by Gérard Laumon and Ngô Bảo Châu in the case of unitary groups and then by for general reductive groups, building on a series of important reductions made by Jean-Loup Waldspurger to the case of Lie algebras. Time magazine placed Ngô's proof on the list of the "Top 10 scientific discoveries of 2009". In 2010, Ngô was awarded the Fields Medal for this proof. (en)
  • У математичній теорії автоморфних форм основна лема пов'язує орбітальні інтеграли на відновлювальній групі над локальним полем зі стабільними орбітальними інтегралами на його ендоскопічних групах . Про це здогадався Роберт Ленгландс(1983) в процесі розробки програми Langlands . Фундаментальна лема була доведена Жераром Ломоном та Нго Боо Чау у випадку унітарних груп, а потім для загальних редукційних груп, спираючись на низку важливих скорочень, зроблених Жаном-Лупом Вальдспургером до випадку алгебр Лі . Журнал Time помістив докази Нго у список "10 найкращих наукових відкриттів 2009 року". У 2010 році Нго була нагороджена медаллю Fields за цей доказ. (uk)
dcterms:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Link from a Wikipage to an external page
sameAs
dbp:wikiPageUsesTemplate
authorlink
  • Robert Langlands (en)
date
  • December 2021 (en)
first
  • Diana (en)
  • Robert (en)
last
  • Langlands (en)
  • Shelstad (en)
reason
  • The opening sentence needs to be understandable by a non-mathematician (en)
year
has abstract
  • In the mathematical theory of automorphic forms, the fundamental lemma relates orbital integrals on a reductive group over a local field to stable orbital integrals on its endoscopic groups. It was conjectured by Robert Langlands in the course of developing the Langlands program. The fundamental lemma was proved by Gérard Laumon and Ngô Bảo Châu in the case of unitary groups and then by for general reductive groups, building on a series of important reductions made by Jean-Loup Waldspurger to the case of Lie algebras. Time magazine placed Ngô's proof on the list of the "Top 10 scientific discoveries of 2009". In 2010, Ngô was awarded the Fields Medal for this proof. (en)
Faceted Search & Find service v1.17_git147 as of Sep 06 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3332 as of Dec 5 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (378 GB total memory, 76 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software