About: Gelfand representation     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : yago:Science105999797, within Data Space : dbpedia.demo.openlinksw.com associated with source document(s)
QRcode icon
http://dbpedia.demo.openlinksw.com/c/6sDvCKmdeo

In mathematics, the Gelfand representation in functional analysis (named after I. M. Gelfand) is either of two things: * a way of representing commutative Banach algebras as algebras of continuous functions; * the fact that for commutative C*-algebras, this representation is an isometric isomorphism.

AttributesValues
rdf:type
rdfs:label
  • Gelfand-Transformation (de)
  • Gelfand representation (en)
  • Transformata Gelfanda (pl)
rdfs:comment
  • Die Gelfand-Transformation (nach Israel Gelfand) ist das wichtigste Instrument in der Theorie der kommutativen Banach-Algebren. Sie bildet eine kommutative -Banachalgebra A in eine Algebra stetiger Funktionen ab. Jedem aus wird eine stetige Funktion zugeordnet, wobei ein geeigneter lokalkompakter Hausdorff-Raum ist. Die Zuordnung ist dabei ein stetiger Algebren-Homomorphismus. (de)
  • In mathematics, the Gelfand representation in functional analysis (named after I. M. Gelfand) is either of two things: * a way of representing commutative Banach algebras as algebras of continuous functions; * the fact that for commutative C*-algebras, this representation is an isometric isomorphism. (en)
  • Transformata Gelfanda – dla danej przemiennej algebry Banacha przyporządkowanie dane wzorem gdzie jest elementem zbioru tj. należy do zbioru wszystkich niezerowych homomorfizmów algebry o wartościach w ciele liczb zespolonych. W zbiorze wprowadza się najsłabszą topologię względem, której wszystkie jego elementy są funkcjami ciągłymi (tzw. topologię Gelfanda; zbiór z topologią Gelfanda nazywany jest przestrzenią Gelfanda algebry ). Przestrzeń Gelfanda jest zawsze lokalnie zwartą przestrzenią Hausdorffa, przy czym jest ona zwarta wtedy i tylko wtedy, gdy algebra ma jedynkę. Otoczenia bazowe danego punktu z przestrzeni Gelfanda są postaci (pl)
rdfs:seeAlso
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
sameAs
dbp:wikiPageUsesTemplate
has abstract
  • Die Gelfand-Transformation (nach Israel Gelfand) ist das wichtigste Instrument in der Theorie der kommutativen Banach-Algebren. Sie bildet eine kommutative -Banachalgebra A in eine Algebra stetiger Funktionen ab. Jedem aus wird eine stetige Funktion zugeordnet, wobei ein geeigneter lokalkompakter Hausdorff-Raum ist. Die Zuordnung ist dabei ein stetiger Algebren-Homomorphismus. (de)
  • In mathematics, the Gelfand representation in functional analysis (named after I. M. Gelfand) is either of two things: * a way of representing commutative Banach algebras as algebras of continuous functions; * the fact that for commutative C*-algebras, this representation is an isometric isomorphism. In the former case, one may regard the Gelfand representation as a far-reaching generalization of the Fourier transform of an integrable function. In the latter case, the Gelfand–Naimark representation theorem is one avenue in the development of spectral theory for normal operators, and generalizes the notion of diagonalizing a normal matrix. (en)
  • Transformata Gelfanda – dla danej przemiennej algebry Banacha przyporządkowanie dane wzorem gdzie jest elementem zbioru tj. należy do zbioru wszystkich niezerowych homomorfizmów algebry o wartościach w ciele liczb zespolonych. W zbiorze wprowadza się najsłabszą topologię względem, której wszystkie jego elementy są funkcjami ciągłymi (tzw. topologię Gelfanda; zbiór z topologią Gelfanda nazywany jest przestrzenią Gelfanda algebry ). Przestrzeń Gelfanda jest zawsze lokalnie zwartą przestrzenią Hausdorffa, przy czym jest ona zwarta wtedy i tylko wtedy, gdy algebra ma jedynkę. Otoczenia bazowe danego punktu z przestrzeni Gelfanda są postaci gdzie jest skończonym podzbiorem Zbiór nazywany jest radykałem Gelfanda algebry Radykał Gelfanda zawiera radykał Jacobsona algebry oraz dowolny jej komutator, tj. element postaci gdzie i są elementami algebry Transformata Gelfanda jest ciągłym homomorfizmem algebr o wartościach w C*-algebrze wszystkich funkcji ciągłych na przestrzeni Gelfanda danej algebry. (pl)
gold:hypernym
prov:wasDerivedFrom
page length (characters) of wiki page
foaf:isPrimaryTopicOf
is Link from a Wikipage to another Wikipage of
Faceted Search & Find service v1.17_git147 as of Sep 06 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3331 as of Sep 2 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (378 GB total memory, 52 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software