About: Geometric stable distribution     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : yago:WikicatProbabilityDistributionsWithNon-finiteVariance, within Data Space : dbpedia.demo.openlinksw.com associated with source document(s)
QRcode icon
http://dbpedia.demo.openlinksw.com/c/5ZxR2KXhHD

A geometric stable distribution or geo-stable distribution is a type of leptokurtic probability distribution. Geometric stable distributions were introduced in Klebanov, L. B., Maniya, G. M., and Melamed, I. A. (1985). A problem of Zolotarev and analogs of infinitely divisible and stable distributions in a scheme for summing a random number of random variables. These distributions are analogues for stable distributions for the case when the number of summands is random, independent of the distribution of summand, and having geometric distribution. The geometric stable distribution may be symmetric or asymmetric. A symmetric geometric stable distribution is also referred to as a Linnik distribution. The Laplace distribution and asymmetric Laplace distribution are special cases of the geomet

AttributesValues
rdf:type
rdfs:label
  • Loi géométrique stable (fr)
  • Geometric stable distribution (en)
rdfs:comment
  • En théorie des probabilités et en statistique, la loi géométrique stable est un type de loi de probabilité leptokurtique. La loi géométrique stable peut être symétrique ou asymétrique. Cette loi est également appelée loi de Linnik. Les lois de Laplace et de Mittag-Leffler en sont des cas particuliers. La loi géométrique stable a des applications en finance. (fr)
  • A geometric stable distribution or geo-stable distribution is a type of leptokurtic probability distribution. Geometric stable distributions were introduced in Klebanov, L. B., Maniya, G. M., and Melamed, I. A. (1985). A problem of Zolotarev and analogs of infinitely divisible and stable distributions in a scheme for summing a random number of random variables. These distributions are analogues for stable distributions for the case when the number of summands is random, independent of the distribution of summand, and having geometric distribution. The geometric stable distribution may be symmetric or asymmetric. A symmetric geometric stable distribution is also referred to as a Linnik distribution. The Laplace distribution and asymmetric Laplace distribution are special cases of the geomet (en)
name
  • Geometric stable (en)
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
sameAs
skewness
  • when , otherwise undefined (en)
support
  • , or if and , or if and (en)
variance
  • when , otherwise infinite (en)
dbp:wikiPageUsesTemplate
type
  • continuous (en)
mode
  • when (en)
has abstract
  • A geometric stable distribution or geo-stable distribution is a type of leptokurtic probability distribution. Geometric stable distributions were introduced in Klebanov, L. B., Maniya, G. M., and Melamed, I. A. (1985). A problem of Zolotarev and analogs of infinitely divisible and stable distributions in a scheme for summing a random number of random variables. These distributions are analogues for stable distributions for the case when the number of summands is random, independent of the distribution of summand, and having geometric distribution. The geometric stable distribution may be symmetric or asymmetric. A symmetric geometric stable distribution is also referred to as a Linnik distribution. The Laplace distribution and asymmetric Laplace distribution are special cases of the geometric stable distribution. The Mittag-Leffler distribution is also a special case of a geometric stable distribution. The geometric stable distribution has applications in finance theory. (en)
  • En théorie des probabilités et en statistique, la loi géométrique stable est un type de loi de probabilité leptokurtique. La loi géométrique stable peut être symétrique ou asymétrique. Cette loi est également appelée loi de Linnik. Les lois de Laplace et de Mittag-Leffler en sont des cas particuliers. La loi géométrique stable a des applications en finance. (fr)
cdf
  • not analytically expressible, except for certain parameter values (en)
char
  • , (en)
  • where (en)
kurtosis
  • when , otherwise undefined (en)
median
  • when (en)
mgf
  • undefined (en)
parameters
  • — location parameter (en)
  • — scale parameter (en)
  • — skewness parameter (en)
  • — stability parameter (en)
pdf
  • not analytically expressible, except for some parameter values (en)
prov:wasDerivedFrom
page length (characters) of wiki page
foaf:isPrimaryTopicOf
is Link from a Wikipage to another Wikipage of
is Wikipage redirect of
is foaf:primaryTopic of
Faceted Search & Find service v1.17_git147 as of Sep 06 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3331 as of Sep 2 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (378 GB total memory, 52 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software