About: Gluing axiom     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : yago:Speech107109196, within Data Space : dbpedia.demo.openlinksw.com associated with source document(s)
QRcode icon
http://dbpedia.demo.openlinksw.com/c/5CHWQDMU9v

In mathematics, the gluing axiom is introduced to define what a sheaf on a topological space must satisfy, given that it is a presheaf, which is by definition a contravariant functor to a category which initially one takes to be the category of sets. Here is the partial order of open sets of ordered by inclusion maps; and considered as a category in the standard way, with a unique morphism if is a subset of , and none otherwise. is the subset of With equal image in and .

AttributesValues
rdf:type
rdfs:label
  • Gluing axiom (en)
rdfs:comment
  • In mathematics, the gluing axiom is introduced to define what a sheaf on a topological space must satisfy, given that it is a presheaf, which is by definition a contravariant functor to a category which initially one takes to be the category of sets. Here is the partial order of open sets of ordered by inclusion maps; and considered as a category in the standard way, with a unique morphism if is a subset of , and none otherwise. is the subset of With equal image in and . (en)
rdfs:seeAlso
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
sameAs
dbp:wikiPageUsesTemplate
has abstract
  • In mathematics, the gluing axiom is introduced to define what a sheaf on a topological space must satisfy, given that it is a presheaf, which is by definition a contravariant functor to a category which initially one takes to be the category of sets. Here is the partial order of open sets of ordered by inclusion maps; and considered as a category in the standard way, with a unique morphism if is a subset of , and none otherwise. As phrased in the sheaf article, there is a certain axiom that must satisfy, for any open cover of an open set of . For example, given open sets and with union and intersection , the required condition is that is the subset of With equal image in In less formal language, a section of over is equally well given by a pair of sections : on and respectively, which 'agree' in the sense that and have a common image in under the respective restriction maps and . The first major hurdle in sheaf theory is to see that this gluing or patching axiom is a correct abstraction from the usual idea in geometric situations. For example, a vector field is a section of a tangent bundle on a smooth manifold; this says that a vector field on the union of two open sets is (no more and no less than) vector fields on the two sets that agree where they overlap. Given this basic understanding, there are further issues in the theory, and some will be addressed here. A different direction is that of the Grothendieck topology, and yet another is the logical status of 'local existence' (see Kripke–Joyal semantics). (en)
gold:hypernym
prov:wasDerivedFrom
page length (characters) of wiki page
foaf:isPrimaryTopicOf
is Link from a Wikipage to another Wikipage of
Faceted Search & Find service v1.17_git147 as of Sep 06 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3331 as of Sep 2 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (378 GB total memory, 52 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software