About: Goat problem     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : owl:Thing, within Data Space : dbpedia.demo.openlinksw.com associated with source document(s)
QRcode icon
http://dbpedia.demo.openlinksw.com/c/A9cZpoHLe5

The goat problem is either of two related problems in recreational mathematics involving at least figuratively a tethered goat (horse, bull) grazing a circular area: the interior grazing problem and the exterior grazing problem. The former involves grazing the interior of a circular area, and the latter, grazing the exterior of a circular area. The related problem involving area in the interior of a circle without reference to barnyard animals first appeared in 1894 in the first edition of the renown journal American Mathematical Monthly. Attributed to Charles E. Myers, it was stated as:

AttributesValues
rdf:type
rdfs:label
  • Ziegenproblem (Geometrie) (de)
  • Problema de la cabra (geometría) (es)
  • Problème de la chèvre (fr)
  • Goat problem (en)
rdfs:comment
  • Das Ziegenproblem – auch Die grasende Ziege genannt – ist ein seit dem 18. Jahrhundert bekanntes Problem der Unterhaltungsmathematik. Die erste Veröffentlichung erfolgte 1748 in dem in England einmal jährlich erscheinenden The Ladies Diary: or, the Woman’s Almanack. (de)
  • El problema de la cabra (también conocido como el problema de la cabra pastando en un prado circular)​ es un conocido problema de matemática recreativa que data del siglo XVIII. Se publicó por primera vez en 1748, en The Ladies Diary (denominado igualmente Woman's Almanack), editado anualmente en Inglaterra. (es)
  • En mathématiques récréatives, le problème de la chèvre est le nom donné à divers problèmes concernant la superficie qu'une chèvre attachée à un pieu peut brouter en liaison avec la longueur de sa corde, dans diverses situations. On présente ici deux variantes classiques, ayant la particularité rare en mathématiques récréatives d'obliger à résoudre des équations non algébriques, la première demandant de surcroit un calcul d'aire non élémentaire. On trouvera dans les références suivantes de nombreuses autres variantes. (fr)
  • The goat problem is either of two related problems in recreational mathematics involving at least figuratively a tethered goat (horse, bull) grazing a circular area: the interior grazing problem and the exterior grazing problem. The former involves grazing the interior of a circular area, and the latter, grazing the exterior of a circular area. The related problem involving area in the interior of a circle without reference to barnyard animals first appeared in 1894 in the first edition of the renown journal American Mathematical Monthly. Attributed to Charles E. Myers, it was stated as: (en)
differentFrom
foaf:depiction
  • http://commons.wikimedia.org/wiki/Special:FilePath/Goat_problem_2D.svg
  • http://commons.wikimedia.org/wiki/Special:FilePath/Involute_of_circle_of_radius_r.jpg
  • http://commons.wikimedia.org/wiki/Special:FilePath/Two_intersecting_spheres_transparent.png
dcterms:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Link from a Wikipage to an external page
sameAs
dbp:wikiPageUsesTemplate
thumbnail
title
  • Goat Problem (en)
urlname
  • GoatProblem (en)
has abstract
  • Das Ziegenproblem – auch Die grasende Ziege genannt – ist ein seit dem 18. Jahrhundert bekanntes Problem der Unterhaltungsmathematik. Die erste Veröffentlichung erfolgte 1748 in dem in England einmal jährlich erscheinenden The Ladies Diary: or, the Woman’s Almanack. (de)
  • The goat problem is either of two related problems in recreational mathematics involving at least figuratively a tethered goat (horse, bull) grazing a circular area: the interior grazing problem and the exterior grazing problem. The former involves grazing the interior of a circular area, and the latter, grazing the exterior of a circular area. The original problem was the exterior grazing problem and appeared in the 1748 edition of the English annual journal The Ladies' Diary: or, the Woman’s Almanack, designated as Question CCCIII attributed to Upnorensis (an unknown historical figure), stated thus: Observing a horse tied to feed in a gentlemen’s park, with one end of a rope to his fore foot, and the other end to one of the circular iron rails, inclosing a pond, the circumference of which rails being 160 yards, equal to the length of the rope, what quantity of ground at most, could the horse feed? The related problem involving area in the interior of a circle without reference to barnyard animals first appeared in 1894 in the first edition of the renown journal American Mathematical Monthly. Attributed to Charles E. Myers, it was stated as: A circle containing one acre is cut by another whose center is on the circumference of the given circle, and the area common to both is one-half acre. Find the radius of the cutting circle. The solutions in both cases are non-trivial but yield to straightforward application of trigonometry, analytical geometry or integral calculus. Both problems are intrinsically transcendental – they do not have closed-form analytical solutions in the Euclidean plane. The numerical answers must be obtained by an iterative approximation procedure. The goat problems do not yield any new mathematical insights; rather they are primarily exercises in how to artfully deconstruct problems in order to facilitate solution. Three-dimensional analogues and planar boundary/area problems on other shapes, including the obvious rectangular barn and/or field, have been proposed and solved. A generalized solution for any smooth convex curve like an ellipse, and even unclosed curves, has been formulated. (en)
  • El problema de la cabra (también conocido como el problema de la cabra pastando en un prado circular)​ es un conocido problema de matemática recreativa que data del siglo XVIII. Se publicó por primera vez en 1748, en The Ladies Diary (denominado igualmente Woman's Almanack), editado anualmente en Inglaterra. (es)
  • En mathématiques récréatives, le problème de la chèvre est le nom donné à divers problèmes concernant la superficie qu'une chèvre attachée à un pieu peut brouter en liaison avec la longueur de sa corde, dans diverses situations. On présente ici deux variantes classiques, ayant la particularité rare en mathématiques récréatives d'obliger à résoudre des équations non algébriques, la première demandant de surcroit un calcul d'aire non élémentaire. On trouvera dans les références suivantes de nombreuses autres variantes. (fr)
prov:wasDerivedFrom
page length (characters) of wiki page
foaf:isPrimaryTopicOf
is Link from a Wikipage to another Wikipage of
is foaf:primaryTopic of
Faceted Search & Find service v1.17_git147 as of Sep 06 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3332 as of Dec 5 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (378 GB total memory, 76 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software