About: Grothendieck inequality     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : yago:WikicatInequalities, within Data Space : dbpedia.demo.openlinksw.com associated with source document(s)
QRcode icon
http://dbpedia.demo.openlinksw.com/c/2eyRx77ax1

In mathematics, the Grothendieck inequality states that there is a universal constant with the following property. If Mij is an n × n (real or complex) matrix with for all (real or complex) numbers si, tj of absolute value at most 1, then The Grothendieck inequality and Grothendieck constants are named after Alexander Grothendieck, who proved the existence of the constants in a paper published in 1953.

AttributesValues
rdf:type
rdfs:label
  • Grothendieck inequality (en)
  • 格羅滕迪克不等式 (zh)
rdfs:comment
  • 格羅滕迪克不等式又稱為安蘇納姆梅·蘿狄絲不等式,是數學中表示兩個量 及 , 的關係的不等式,其中是一個希爾伯特空間中的單位球。適合不等式 的最佳常數稱為希爾伯特空間的格羅滕迪克常數。 證明有一個獨立於的上界:定義 格羅滕迪克證明了 之後克里維納(Krivine)證出 即使對此繼續有研究,到現在還不知道確實數值。 (zh)
  • In mathematics, the Grothendieck inequality states that there is a universal constant with the following property. If Mij is an n × n (real or complex) matrix with for all (real or complex) numbers si, tj of absolute value at most 1, then The Grothendieck inequality and Grothendieck constants are named after Alexander Grothendieck, who proved the existence of the constants in a paper published in 1953. (en)
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
sameAs
dbp:wikiPageUsesTemplate
title
  • Grothendieck's Constant (en)
urlname
  • GrothendiecksConstant (en)
has abstract
  • In mathematics, the Grothendieck inequality states that there is a universal constant with the following property. If Mij is an n × n (real or complex) matrix with for all (real or complex) numbers si, tj of absolute value at most 1, then for all vectors Si, Tj in the unit ball B(H) of a (real or complex) Hilbert space H, the constant being independent of n. For a fixed Hilbert space of dimension d, the smallest constant that satisfies this property for all n × n matrices is called a Grothendieck constant and denoted . In fact, there are two Grothendieck constants, and , depending on whether one works with real or complex numbers, respectively. The Grothendieck inequality and Grothendieck constants are named after Alexander Grothendieck, who proved the existence of the constants in a paper published in 1953. (en)
  • 格羅滕迪克不等式又稱為安蘇納姆梅·蘿狄絲不等式,是數學中表示兩個量 及 , 的關係的不等式,其中是一個希爾伯特空間中的單位球。適合不等式 的最佳常數稱為希爾伯特空間的格羅滕迪克常數。 證明有一個獨立於的上界:定義 格羅滕迪克證明了 之後克里維納(Krivine)證出 即使對此繼續有研究,到現在還不知道確實數值。 (zh)
prov:wasDerivedFrom
page length (characters) of wiki page
foaf:isPrimaryTopicOf
is Link from a Wikipage to another Wikipage of
is Wikipage redirect of
is known for of
is foaf:primaryTopic of
Faceted Search & Find service v1.17_git147 as of Sep 06 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3331 as of Sep 2 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (378 GB total memory, 52 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software