About: Hill limit (solid-state)     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : owl:Thing, within Data Space : dbpedia.demo.openlinksw.com associated with source document(s)
QRcode icon
http://dbpedia.demo.openlinksw.com/c/5CX4AG71xo

In solid-state physics, the Hill limit is a critical distance defined in a lattice of actinide or rare-earth atoms. These atoms own partially filled or levels in their valence shell and are therefore responsible for the main interaction between each atom and its environment. In this context, the hill limit is defined as twice the radius of the -orbital. Therefore, if two atoms of the lattice are separate by a distance greater than the Hill limit, the overlap of their -orbital becomes negligible. A direct consequence is the absence of hopping for the f electrons, ie their localization on the ion sites of the lattice.

AttributesValues
rdfs:label
  • Hill limit (solid-state) (en)
rdfs:comment
  • In solid-state physics, the Hill limit is a critical distance defined in a lattice of actinide or rare-earth atoms. These atoms own partially filled or levels in their valence shell and are therefore responsible for the main interaction between each atom and its environment. In this context, the hill limit is defined as twice the radius of the -orbital. Therefore, if two atoms of the lattice are separate by a distance greater than the Hill limit, the overlap of their -orbital becomes negligible. A direct consequence is the absence of hopping for the f electrons, ie their localization on the ion sites of the lattice. (en)
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
sameAs
dbp:wikiPageUsesTemplate
has abstract
  • In solid-state physics, the Hill limit is a critical distance defined in a lattice of actinide or rare-earth atoms. These atoms own partially filled or levels in their valence shell and are therefore responsible for the main interaction between each atom and its environment. In this context, the hill limit is defined as twice the radius of the -orbital. Therefore, if two atoms of the lattice are separate by a distance greater than the Hill limit, the overlap of their -orbital becomes negligible. A direct consequence is the absence of hopping for the f electrons, ie their localization on the ion sites of the lattice. Localized f electrons lead to paramagnetic materials since the remaining unpaired spins are stuck in their orbitals. However, when the rare-earth lattice (or a single atom) is embedded in a metallic one (intermetallic compound), interactions with the conduction band allow the f electrons to move through the lattice even for interatomic distances above the Hill limit. (en)
prov:wasDerivedFrom
page length (characters) of wiki page
foaf:isPrimaryTopicOf
is Link from a Wikipage to another Wikipage of
is foaf:primaryTopic of
Faceted Search & Find service v1.17_git147 as of Sep 06 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3331 as of Sep 2 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (378 GB total memory, 56 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software