About: Hyperplane at infinity     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : owl:Thing, within Data Space : dbpedia.demo.openlinksw.com associated with source document(s)
QRcode icon
http://dbpedia.demo.openlinksw.com/c/2bvtwnVM41

In geometry, any hyperplane H of a projective space P may be taken as a hyperplane at infinity. Then the set complement P ∖ H is called an affine space. For instance, if (x1, ..., xn, xn+1) are homogeneous coordinates for n-dimensional projective space, then the equation xn+1 = 0 defines a hyperplane at infinity for the n-dimensional affine space with coordinates (x1, ..., xn). H is also called the ideal hyperplane. In the projective space, each projective subspace of dimension k intersects the ideal hyperplane in a projective subspace "at infinity" whose dimension is k − 1.

AttributesValues
rdfs:label
  • Hyperplane at infinity (en)
rdfs:comment
  • In geometry, any hyperplane H of a projective space P may be taken as a hyperplane at infinity. Then the set complement P ∖ H is called an affine space. For instance, if (x1, ..., xn, xn+1) are homogeneous coordinates for n-dimensional projective space, then the equation xn+1 = 0 defines a hyperplane at infinity for the n-dimensional affine space with coordinates (x1, ..., xn). H is also called the ideal hyperplane. In the projective space, each projective subspace of dimension k intersects the ideal hyperplane in a projective subspace "at infinity" whose dimension is k − 1. (en)
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
sameAs
dbp:wikiPageUsesTemplate
has abstract
  • In geometry, any hyperplane H of a projective space P may be taken as a hyperplane at infinity. Then the set complement P ∖ H is called an affine space. For instance, if (x1, ..., xn, xn+1) are homogeneous coordinates for n-dimensional projective space, then the equation xn+1 = 0 defines a hyperplane at infinity for the n-dimensional affine space with coordinates (x1, ..., xn). H is also called the ideal hyperplane. Similarly, starting from an affine space A, every class of parallel lines can be associated with a point at infinity. The union over all classes of parallels constitute the points of the hyperplane at infinity. Adjoining the points of this hyperplane (called ideal points) to A converts it into an n-dimensional projective space, such as the real projective space RPn. By adding these ideal points, the entire affine space A is completed to a projective space P, which may be called the projective completion of A. Each affine subspace S of A is completed to a projective subspace of P by adding to S all the ideal points corresponding to the directions of the lines contained in S. The resulting projective subspaces are often called affine subspaces of the projective space P, as opposed to the infinite or ideal subspaces, which are the subspaces of the hyperplane at infinity (however, they are projective spaces, not affine spaces). In the projective space, each projective subspace of dimension k intersects the ideal hyperplane in a projective subspace "at infinity" whose dimension is k − 1. A pair of non-parallel affine hyperplanes intersect at an affine subspace of dimension n − 2, but a parallel pair of affine hyperplanes intersect at a projective subspace of the ideal hyperplane (the intersection lies on the ideal hyperplane). Thus, parallel hyperplanes, which did not meet in the affine space, intersect in the projective completion due to the addition of the hyperplane at infinity. (en)
prov:wasDerivedFrom
page length (characters) of wiki page
foaf:isPrimaryTopicOf
is Link from a Wikipage to another Wikipage of
is foaf:primaryTopic of
Faceted Search & Find service v1.17_git147 as of Sep 06 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3331 as of Sep 2 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (378 GB total memory, 53 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software