About: Interconnect bottleneck     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : yago:Whole100003553, within Data Space : dbpedia.demo.openlinksw.com associated with source document(s)
QRcode icon
http://dbpedia.demo.openlinksw.com/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FInterconnect_bottleneck

The interconnect bottleneck comprises limits on integrated circuit (IC) performance due to connections between components instead of their internal speed.In 2006 it was predicted to be a "looming crisis" by 2010.

AttributesValues
rdf:type
rdfs:label
  • Interconnect bottleneck (en)
rdfs:comment
  • The interconnect bottleneck comprises limits on integrated circuit (IC) performance due to connections between components instead of their internal speed.In 2006 it was predicted to be a "looming crisis" by 2010. (en)
dcterms:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
sameAs
dbp:wikiPageUsesTemplate
has abstract
  • The interconnect bottleneck comprises limits on integrated circuit (IC) performance due to connections between components instead of their internal speed.In 2006 it was predicted to be a "looming crisis" by 2010. Improved performance of computer systems has been achieved, in large part, by downscaling the IC minimum feature size. This allows the basic IC building block, the transistor, to operate at a higher frequency, performing more computations per second. However, downscaling of the minimum feature size also results in tighter packing of the wires on a microprocessor, which increases parasitic capacitance and signal propagation delay. Consequently, the delay due to the communication between the parts of a chip becomes comparable to the computation delay itself. This phenomenon, known as an “interconnect bottleneck”, is becoming a major problem in high-performance computer systems. This interconnect bottleneck can be solved by utilizing optical interconnects to replace the long metallic interconnects. Such hybrid optical/electronic interconnects promise better performance even with larger designs. Optics has widespread use in long-distance communications; still it has not yet been widely used in chip-to-chip or on-chip interconnections because they (in centimeter or micrometer range) are not yet industry-manufacturable owing to costlier technology and lack of fully mature technologies. As optical interconnections move from computer network applications to chip level interconnections, new requirements for high connection density and alignment reliability have become as critical for the effective utilization of these links. There are still many materials, fabrication, and packaging challenges in integrating optic and electronic technologies. (en)
prov:wasDerivedFrom
page length (characters) of wiki page
foaf:isPrimaryTopicOf
is Link from a Wikipage to another Wikipage of
is Wikipage redirect of
is Wikipage disambiguates of
is foaf:primaryTopic of
Faceted Search & Find service v1.17_git139 as of Feb 29 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3330 as of Mar 19 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (378 GB total memory, 59 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software