About: Inverse hyperbolic functions     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : owl:Thing, within Data Space : dbpedia.demo.openlinksw.com associated with source document(s)
QRcode icon
http://dbpedia.demo.openlinksw.com/c/3VSp1DCXzP

In mathematics, the inverse hyperbolic functions are the inverse functions of the hyperbolic functions. For a given value of a hyperbolic function, the corresponding inverse hyperbolic function provides the corresponding hyperbolic angle. The size of the hyperbolic angle is equal to the area of the corresponding hyperbolic sector of the hyperbola xy = 1, or twice the area of the corresponding sector of the unit hyperbola x2 − y2 = 1, just as a circular angle is twice the area of the circular sector of the unit circle. Some authors have called inverse hyperbolic functions "area functions" to realize the hyperbolic angles.

AttributesValues
rdfs:label
  • Inverse hyperbolic functions (en)
  • دوال زائدية عكسية (ar)
  • Hyperbolometrická funkce (cs)
  • Areafunktion (de)
  • Inversa hiperbola funkcio (eo)
  • Funciones hiperbólicas inversas (es)
  • Fungsi hiperbolik invers (in)
  • Sinus hyperbolique réciproque (fr)
  • 逆双曲線関数 (ja)
  • Areaalfunctie (nl)
  • Funkcje hiperboliczne odwrotne (pl)
  • Função hiperbólica inversa (pt)
  • Обратные гиперболические функции (ru)
  • Обернені гіперболічні функції (uk)
  • 反双曲函数 (zh)
rdfs:comment
  • Hyperbolometrické funkce jsou funkce inverzní k funkcím hyperbolickým. Jedná se o funkce argument hyperbolického sinu (argsinh x), argument hyperbolického kosinu (argcosh x), argument hyperbolického tangens (argtanh x) a argument hyperbolického kotangens (argcoth x). (cs)
  • Le sinus hyperbolique réciproque est, en mathématiques, une fonction hyperbolique. (fr)
  • De areaalfuncties zijn de inverse functies van de hyperbolische functies. De aanduiding 'areaal' in areaalfunctie refereert aan de betekenis van deze functies als oppervlakte. (nl)
  • 逆双曲線関数(ぎゃくそうきょくせんかんすう、英語: inverse hyperbolic functions)は、数学において与えられた双曲線関数の値に対応してを与える関数。双曲角の大きさは双曲線 x y = 1に対応するの面積に等しく、単位円の扇形の面積は対応する中心角の2分の1 である。一部の研究者は逆双曲線関数のことを、双曲角を明確に理解するため「面積関数」(英語: area function)と呼ぶ。 逆双曲線関数を表す略記法 arsinh やarcosh とは異なる略記法として、arcsinh やarccosh などが本来誤表記であるにもかかわらず良く使用されるのだが、接頭辞arc はarcus (弓)の省略形であり、接頭辞ar はarea の省略形である。argsinh, argcosh, argtanhなどの表記を好んで用いる研究者もいる。計算機科学の分野では、しばしばasinh という省略形を用いる。累乗を表す上付き文字−1と誤解しないように注意を払う必要があるという事実にもかかわらず、sinh−1(x), cosh−1(x), などの略記も用いられる。また、cosh−1(x)とcosh(x)−1は似て非なるものである。 (ja)
  • 反双曲函数是双曲函数的反函数。与反圆函数不同之处是它的前缀是ar意即area(面积),而不是arc(弧)。因为双曲角是以双曲线、通过原点直线以及其对x轴的映射三者之间所夹面积定义的,而圆角是以弧长与半径的比值定义。 (zh)
  • Обернені гіперболічні функції — визначаються як обернені функції до гіперболічних функцій. Ці функції визначають площу сектора одиничної гіперболи x2 − y2 = 1 аналогічно до того, як обернені тригонометричні функції визначають довжину дуги одиничного кола x2 + y2 = 1. Для цих функцій часто використовуються позначення arcsinh, arcsh, arccosh, arcch і т.д., хоча таке позначення є загалом помилковим, оскільки arc є скороченням від arcus — дуга, тоді як префікс ar означає area — площа. Тож правильними є позначення arsinh, arsh і т.д. і назви гіперболічний ареасинус, гіперболічний ареакосинус і т.д. (uk)
  • الدوال الزائدية العكسية (ويطلق عليها أيضا اسم الدوال المساحية) هي الدوال العكسية للدوال الزائدية. للحصول على قيمة معينة من دالة الزائدية، توفر الدالة الزائدية العكسية المقابلة الزاوية الزائدية المقابلة. حجم الزاوية الزائدية يساوي مساحة القطاع الزائدي المقابل للقطع الزائد الذي معادلته xy = 1، أو ضعف مساحة القطاع المقابل الذي معادلته x2 − y2 = 1، تمامًا كما تكون الزاوية الدائرية ضعف مساحة القطاع الدائري لدائرة الوحدة. (ar)
  • In der Mathematik bezeichnet man mit Areafunktionen die folgenden sechs Funktionen: * Areasinus hyperbolicus und Areakosinus hyperbolicus * Areatangens hyperbolicus und Areakotangens hyperbolicus * Areasekans hyperbolicus und Areakosekans hyperbolicus Sie sind die Umkehrfunktionen der Hyperbelfunktionen. Die Bezeichnung area (lat. Fläche) gibt an, dass diese den Flächeninhalt eines Sektors der Einheitshyperbel berechnen. Analog dazu berechnen die Arkusfunktionen (arcus lat. Bogen) die Bogenlänge eines Sektors des Einheitskreises * Graphen der Areafunktionen * Areasinus hyperbolicus * * * * (de)
  • En matematiko, inversaj hiperbolaj funkcioj estas de hiperbolaj funkcioj. Ili estas nomataj ankaŭ kiel areaj hiperbolaj funkcioj, ĉar ili komputas areon de sektoro de la unua hiperbolo x2-y2 = 1, simile al tio kiel inversaj trigonometriaj funkcioj komputas longon de arko de la unuobla cirklo x2+y2 = 1. Pro tio ke ĉiuj hiperbolaj funkcioj estas periodaj kun kompleksa periodo 2πi (πi por hiperbola tangento kaj hiperbola kotangento), apliko de la inversa funkcio kun preno de la ĉefa valoro (vidu sube) ne ĉiam donas la originalan valoron. Tiel la inversaj funkcioj estas (eo)
  • In mathematics, the inverse hyperbolic functions are the inverse functions of the hyperbolic functions. For a given value of a hyperbolic function, the corresponding inverse hyperbolic function provides the corresponding hyperbolic angle. The size of the hyperbolic angle is equal to the area of the corresponding hyperbolic sector of the hyperbola xy = 1, or twice the area of the corresponding sector of the unit hyperbola x2 − y2 = 1, just as a circular angle is twice the area of the circular sector of the unit circle. Some authors have called inverse hyperbolic functions "area functions" to realize the hyperbolic angles. (en)
  • En matemáticas, las funciones hiperbólicas inversas son las funciones inversas de las funciones hiperbólicas. Para un valor dado de una función hiperbólica, la función hiperbólica inversa correspondiente proporciona el ángulo hiperbólico. El tamaño del ángulo hiperbólico es igual al área del sector hiperbólico correspondiente de la hipérbola xy = 1, o el doble del área del sector correspondiente de la hipérbola unitaria x2 − y2 = 1, al igual que un ángulo circular es el doble del área del sector circular de la circunferencia goniométrica. Algunos autores han llamado a las funciones hiperbólicas inversas "funciones de área", con el fin de dar un sentido más directo a los ángulos hiperbólicos.​​​​​​​​ (es)
  • Funkcje hiperboliczne odwrotne, funkcje polowe, funkcje area, areafunkcje – funkcje odwrotne do funkcji hiperbolicznych. Ich nazwy odzwierciedlają fakt, że wartości tych funkcji są równe polom odpowiednich wycinków hiperboli jednostkowej w analogiczny sposób, jak funkcje odwrotne do trygonometrycznych są równe polom wycinków koła jednostkowego Definiuje się je następującymi wzorami: (pl)
  • Na matemática, a função hiperbólica inversa fornece um ângulo hiperbólico correspondente a um determinado valor da função hiperbólica. A magnitude do ângulo hiperbólico é equivalente à área do setor hiperbólico da xy = 1, ou o dobro da área correspondente ao setor da unidade x2 − y2 = 1, assim como um ângulo circular é o dobro da área do setor circular de um círculo unitário. (pt)
  • Обра́тные гиперболи́ческие фу́нкции (известные также как а̀реафу́нкции или ареа-функции) — семейство элементарных функций, определяющихся как обратные функции к гиперболическим функциям. Эти функции определяют площадь сектора единичной гиперболы x2 − y2 = 1 аналогично тому, как обратные тригонометрические функции определяют длину дуги единичной окружности x2 + y2 = 1. Для этих функций часто используются обозначения arcsinh, arcsh, arccosh, arcch и т.д., хотя такие обозначения являются, строго говоря, ошибочными, так как префикс arc является сокращением от arcus (дуга) и потому относится только к обратным тригонометрическим функциям, тогда как ar обозначает area — площадь. Более правильными являются обозначения arsinh, arsh и т.д. и названия обратный гиперболический синус, ареасинус и т.д. (ru)
foaf:depiction
  • http://commons.wikimedia.org/wiki/Special:FilePath/Complex_ArcCosh.jpg
  • http://commons.wikimedia.org/wiki/Special:FilePath/Complex_ArcCoth.jpg
  • http://commons.wikimedia.org/wiki/Special:FilePath/Complex_ArcCsch.jpg
  • http://commons.wikimedia.org/wiki/Special:FilePath/Complex_ArcSech.jpg
  • http://commons.wikimedia.org/wiki/Special:FilePath/Complex_ArcSinh.jpg
  • http://commons.wikimedia.org/wiki/Special:FilePath/Complex_ArcTanh.jpg
  • http://commons.wikimedia.org/wiki/Special:FilePath/Mplwp_inverse_hyperbolic_functions.svg
  • http://commons.wikimedia.org/wiki/Special:FilePath/Hyperbolic_functions-2.svg
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
sameAs
Faceted Search & Find service v1.17_git147 as of Sep 06 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3331 as of Sep 2 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (378 GB total memory, 58 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software