About: Kinodynamic planning     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : yago:WikicatAlgorithms, within Data Space : dbpedia.demo.openlinksw.com associated with source document(s)
QRcode icon
http://dbpedia.demo.openlinksw.com/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FKinodynamic_planning

In robotics and motion planning, kinodynamic planning is a class of problems for which velocity, acceleration, and force/torque bounds must be satisfied, together with kinematic constraints such as avoiding obstacles. The term was coined by Bruce Donald, Pat Xavier, John Canny, and John Reif. Donald et al. developed the first polynomial-time approximation schemes (PTAS) for the problem. By providing a provably polynomial-time , they resolved a long-standing open problem in optimal control. Their first paper considered time-optimal control ("fastest path") of a point mass under Newtonian dynamics, amidst polygonal (2D) or polyhedral (3D) obstacles, subject to state bounds on position, velocity, and acceleration. Later they extended the technique to many other cases, for example, to 3D open-

AttributesValues
rdf:type
rdfs:label
  • Kinodynamic planning (en)
rdfs:comment
  • In robotics and motion planning, kinodynamic planning is a class of problems for which velocity, acceleration, and force/torque bounds must be satisfied, together with kinematic constraints such as avoiding obstacles. The term was coined by Bruce Donald, Pat Xavier, John Canny, and John Reif. Donald et al. developed the first polynomial-time approximation schemes (PTAS) for the problem. By providing a provably polynomial-time , they resolved a long-standing open problem in optimal control. Their first paper considered time-optimal control ("fastest path") of a point mass under Newtonian dynamics, amidst polygonal (2D) or polyhedral (3D) obstacles, subject to state bounds on position, velocity, and acceleration. Later they extended the technique to many other cases, for example, to 3D open- (en)
dcterms:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
sameAs
dbp:wikiPageUsesTemplate
has abstract
  • In robotics and motion planning, kinodynamic planning is a class of problems for which velocity, acceleration, and force/torque bounds must be satisfied, together with kinematic constraints such as avoiding obstacles. The term was coined by Bruce Donald, Pat Xavier, John Canny, and John Reif. Donald et al. developed the first polynomial-time approximation schemes (PTAS) for the problem. By providing a provably polynomial-time , they resolved a long-standing open problem in optimal control. Their first paper considered time-optimal control ("fastest path") of a point mass under Newtonian dynamics, amidst polygonal (2D) or polyhedral (3D) obstacles, subject to state bounds on position, velocity, and acceleration. Later they extended the technique to many other cases, for example, to 3D open-chain kinematic robots under full Lagrangian dynamics. More recently, many practical heuristic algorithms based on stochastic optimization and iterative sampling were developed, by a wide range of authors, to address the kinodynamic planning problem. These techniques for kinodynamic planning have been shown to work well in practice. However, none of these heuristic techniques can guarantee the optimality of the computed solution (i.e., they have no performance guarantees), and none can be mathematically proven to be faster than the original PTAS algorithms (i.e., none have a provably lower computational complexity). (en)
prov:wasDerivedFrom
page length (characters) of wiki page
foaf:isPrimaryTopicOf
is Link from a Wikipage to another Wikipage of
is doctoral students of
is doctoral student of
is foaf:primaryTopic of
Faceted Search & Find service v1.17_git139 as of Feb 29 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3330 as of Mar 19 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (378 GB total memory, 60 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software