About: Kleinian group     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : yago:WikicatDiscreteGroups, within Data Space : dbpedia.demo.openlinksw.com associated with source document(s)
QRcode icon
http://dbpedia.demo.openlinksw.com/c/7hTgQbUUt1

In mathematics, a Kleinian group is a discrete subgroup of the group of orientation-preserving isometries of hyperbolic 3-space H3. The latter, identifiable with PSL(2, C), is the quotient group of the 2 by 2 complex matrices of determinant 1 by their center, which consists of the identity matrix and its product by −1. PSL(2, C) has a natural representation as orientation-preserving conformal transformations of the Riemann sphere, and as orientation-preserving conformal transformations of the open unit ball B3 in R3. The group of Möbius transformations is also related as the non-orientation-preserving isometry group of H3, PGL(2, C). So, a Kleinian group can be regarded as a discrete subgroup acting on one of these spaces.

AttributesValues
rdf:type
rdfs:label
  • زمرة كلاينية (ar)
  • Kleinsche Gruppe (de)
  • Grupo kleiniano (es)
  • Kleinian group (en)
  • 클라인 부분군 (ko)
  • Клейнова группа (ru)
rdfs:comment
  • في الرياضيات، زمرة كلاينية هي ... أسست نظرية الزمر الكلاينية العامة من طرف فيليكس كلاين (1883) وهنري بوانكاريه (1883). (ar)
  • In der Mathematik spielen Kleinsche Gruppen eine zentrale Rolle in 3-dimensionaler Topologie, hyperbolischer Geometrie und komplexer Analysis. (de)
  • In mathematics, a Kleinian group is a discrete subgroup of the group of orientation-preserving isometries of hyperbolic 3-space H3. The latter, identifiable with PSL(2, C), is the quotient group of the 2 by 2 complex matrices of determinant 1 by their center, which consists of the identity matrix and its product by −1. PSL(2, C) has a natural representation as orientation-preserving conformal transformations of the Riemann sphere, and as orientation-preserving conformal transformations of the open unit ball B3 in R3. The group of Möbius transformations is also related as the non-orientation-preserving isometry group of H3, PGL(2, C). So, a Kleinian group can be regarded as a discrete subgroup acting on one of these spaces. (en)
  • 군론에서 클라인 부분군(Klein部分群, 영어: Kleinian subgroup)은 의 이산 부분군이다. (ko)
  • Клейнова группа — группы дробно-линейных преобразованийрасширенной комплексной плоскости, являющаяся собственно разрывной. Начало изучения положено в 1883 году Феликсом Клейном и Анри Пуанкаре. Примеры: * — это группа Клейна вида , где — положительное число, не являющееся квадратом какого-либо числа; * группа симметрий периодического замощения гиперболического трёхмерного пространства — группа Клейна. (ru)
  • En matemáticas, un grupo kleiniano es un subgrupo discreto de PSL(2, C). El centro del grupo PSL(2, C) de matrices complejas 2 por 2 de determinante módulo 1 tiene varias representaciones naturales: como transformaciones conformes de la esfera de Riemann, y como isometrías que preservan la orientación en el espacio hiperbólico tridimensional H3, y como aplicaciones conformes que conservan la orientación y que llevan la bola unidad abierta B3 de R3 en sí misma. Además un grupo kleiniano se puede ver como un subgrupo discreto actuando sobre uno de estos espacios. (es)
foaf:depiction
  • http://commons.wikimedia.org/wiki/Special:FilePath/Apollonian_gasket.svg
  • http://commons.wikimedia.org/wiki/Special:FilePath/Kleinian_group_limit_set_on_sphere.svg
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Faceted Search & Find service v1.17_git147 as of Sep 06 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3331 as of Sep 2 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (378 GB total memory, 51 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software