In mathematics, Kolmogorov's normability criterion is a theorem that provides a necessary and sufficient condition for a topological vector space to be normable; that is, for the existence of a norm on the space that generates the given topology. The normability criterion can be seen as a result in same vein as the Nagata–Smirnov metrization theorem and Bing metrization theorem, which gives a necessary and sufficient condition for a topological space to be metrizable. The result was proved by the Russian mathematician Andrey Nikolayevich Kolmogorov in 1934.
Attributes | Values |
---|
rdfs:label
| - Kolmogorov's normability criterion (en)
- Twierdzenie Kołmogorowa o normowaniu przestrzeni liniowo-topologicznych (pl)
|
rdfs:comment
| - In mathematics, Kolmogorov's normability criterion is a theorem that provides a necessary and sufficient condition for a topological vector space to be normable; that is, for the existence of a norm on the space that generates the given topology. The normability criterion can be seen as a result in same vein as the Nagata–Smirnov metrization theorem and Bing metrization theorem, which gives a necessary and sufficient condition for a topological space to be metrizable. The result was proved by the Russian mathematician Andrey Nikolayevich Kolmogorov in 1934. (en)
- Twierdzenie Kołmogorowa o normowaniu przestrzeni liniowo-topologicznych - twierdzenie charakteryzujące te przestrzenie liniowo-topologiczne, w których da się wprowadzić normę tak by oryginalna topologia przestrzeni pokrywała się z topologią wprowadzoną przez normę (tj. przestrzenie normowalne). Twierdzenie udowodnione w 1934 przez A. N. Kołmogorowa. (pl)
|
name
| - Kolmogorov's normability criterion (en)
|
dct:subject
| |
Wikipage page ID
| |
Wikipage revision ID
| |
Link from a Wikipage to another Wikipage
| |
sameAs
| |
dbp:wikiPageUsesTemplate
| |
has abstract
| - In mathematics, Kolmogorov's normability criterion is a theorem that provides a necessary and sufficient condition for a topological vector space to be normable; that is, for the existence of a norm on the space that generates the given topology. The normability criterion can be seen as a result in same vein as the Nagata–Smirnov metrization theorem and Bing metrization theorem, which gives a necessary and sufficient condition for a topological space to be metrizable. The result was proved by the Russian mathematician Andrey Nikolayevich Kolmogorov in 1934. (en)
- Twierdzenie Kołmogorowa o normowaniu przestrzeni liniowo-topologicznych - twierdzenie charakteryzujące te przestrzenie liniowo-topologiczne, w których da się wprowadzić normę tak by oryginalna topologia przestrzeni pokrywała się z topologią wprowadzoną przez normę (tj. przestrzenie normowalne). Twierdzenie udowodnione w 1934 przez A. N. Kołmogorowa. (pl)
|
math statement
| - A topological vector space is normable if and only if it is a T1 space and admits a bounded convex neighbourhood of the origin. (en)
|
prov:wasDerivedFrom
| |
page length (characters) of wiki page
| |
foaf:isPrimaryTopicOf
| |
is Link from a Wikipage to another Wikipage
of | |
is Wikipage redirect
of | |
is foaf:primaryTopic
of | |