Lamé's special quartic, named after Gabriel Lamé, is the graph of the equation where . It looks like a rounded square with "sides" of length and centered on the origin. This curve is a squircle centered on the origin, and it is a special case of a superellipse. Because of Pierre de Fermat's only surviving proof, that of the n = 4 case of Fermat's Last Theorem, if r is rational there is no non-trivial rational point (x, y) on this curve (that is, no point for which both x and y are non-zero rational numbers).
Attributes | Values |
---|---|
rdf:type | |
rdfs:label |
|
rdfs:comment |
|
foaf:depiction | |
dct:subject | |
Wikipage page ID |
|
Wikipage revision ID |
|
Link from a Wikipage to another Wikipage | |
sameAs | |
dbp:wikiPageUsesTemplate | |
thumbnail | |
has abstract |
|
prov:wasDerivedFrom | |
page length (characters) of wiki page |
|
foaf:isPrimaryTopicOf | |
is Link from a Wikipage to another Wikipage of | |
is Wikipage redirect of | |
is known for of | |
is known for of | |
is foaf:primaryTopic of |