In computer science, the lexicographically minimal string rotation or lexicographically least circular substring is the problem of finding the rotation of a string possessing the lowest lexicographical order of all such rotations. For example, the lexicographically minimal rotation of "bbaaccaadd" would be "aaccaaddbb". It is possible for a string to have multiple lexicographically minimal rotations, but for most applications this does not matter as the rotations must be equivalent. Finding the lexicographically minimal rotation is useful as a way of normalizing strings. If the strings represent potentially isomorphic structures such as graphs, normalizing in this way allows for simple equality checking.A common implementation trick when dealing with circular strings is to concatenate the
Attributes | Values |
---|
rdf:type
| |
rdfs:label
| - Lexicographically minimal string rotation (en)
|
rdfs:comment
| - In computer science, the lexicographically minimal string rotation or lexicographically least circular substring is the problem of finding the rotation of a string possessing the lowest lexicographical order of all such rotations. For example, the lexicographically minimal rotation of "bbaaccaadd" would be "aaccaaddbb". It is possible for a string to have multiple lexicographically minimal rotations, but for most applications this does not matter as the rotations must be equivalent. Finding the lexicographically minimal rotation is useful as a way of normalizing strings. If the strings represent potentially isomorphic structures such as graphs, normalizing in this way allows for simple equality checking.A common implementation trick when dealing with circular strings is to concatenate the (en)
|
dct:subject
| |
Wikipage page ID
| |
Wikipage revision ID
| |
Link from a Wikipage to another Wikipage
| |
sameAs
| |
dbp:wikiPageUsesTemplate
| |
has abstract
| - In computer science, the lexicographically minimal string rotation or lexicographically least circular substring is the problem of finding the rotation of a string possessing the lowest lexicographical order of all such rotations. For example, the lexicographically minimal rotation of "bbaaccaadd" would be "aaccaaddbb". It is possible for a string to have multiple lexicographically minimal rotations, but for most applications this does not matter as the rotations must be equivalent. Finding the lexicographically minimal rotation is useful as a way of normalizing strings. If the strings represent potentially isomorphic structures such as graphs, normalizing in this way allows for simple equality checking.A common implementation trick when dealing with circular strings is to concatenate the string to itself instead of having to perform modular arithmetic on the string indices. (en)
|
gold:hypernym
| |
prov:wasDerivedFrom
| |
page length (characters) of wiki page
| |
foaf:isPrimaryTopicOf
| |
is Link from a Wikipage to another Wikipage
of | |
is foaf:primaryTopic
of | |