In neutral or absolute geometry, and in hyperbolic geometry, there may be many lines parallel to a given line through a point not on line ; however, in the plane, two parallels may be closer to than all others (one in each direction of ). Thus it is useful to make a new definition concerning parallels in neutral geometry. If there are closest parallels to a given line they are known as the limiting parallel, asymptotic parallel or horoparallel (horo from Greek: ὅριον — border). If, in a hyperbolic triangle, the pairs of sides are limiting parallel, then the triangle is an ideal triangle.
Attributes | Values |
---|
rdfs:label
| - Limiting parallel (en)
- 극한평행 (ko)
- Асимптотически параллельные прямые (ru)
- Асимптотично паралельні прямі (uk)
|
rdfs:comment
| - 극한평행(極限平行, Limiting parallelism)은 쌍곡기하학에서 존재하는 무한한 평행선 가운데 하나를 일컫는 말이다. 쌍곡기하학에서 직선 l위에 없는 점 P에 대해, P를 지나면서 l과 교차하지 않는 평행선은 무한히 많이 존재한다. 그러나 그 중에서 l의 한쪽 끝에서 거리가 0으로 접근하는 평행선은 각각의 방향에 대해 하나씩 존재하는데, 이러한 관계를 극한평행이라고 하고 극한평행인 평행선을 극한평행선이라고 한다. (ko)
- In neutral or absolute geometry, and in hyperbolic geometry, there may be many lines parallel to a given line through a point not on line ; however, in the plane, two parallels may be closer to than all others (one in each direction of ). Thus it is useful to make a new definition concerning parallels in neutral geometry. If there are closest parallels to a given line they are known as the limiting parallel, asymptotic parallel or horoparallel (horo from Greek: ὅριον — border). If, in a hyperbolic triangle, the pairs of sides are limiting parallel, then the triangle is an ideal triangle. (en)
- В нейтральной или абсолютной геометрии и в геометрии Лобачевского могут иметься много прямых, параллельных данной прямой и проходящих через точку вне этой прямой. Однако две параллельные могут быть ближе к , чем остальные (по одной с каждой стороны). Имеет смысл в этом случаен дать другое определение параллельности для нейтральной геометрии. Если имеются очень близкие параллельные к данной прямой, их называют асимптотически параллельными или параллельными в пределе. Асимптотические параллельные могут образовывать две или три стороны асимптотического треугольника. (ru)
- У нейтральній або абсолютній геометрії і в геометрії Лобачевського може бути багато прямих, які паралельні даній прямій і таких, що проходять через точку за межами цієї прямої. Однак дві паралельні можуть бути ближчими до , ніж інші прямі (по одній з кожної сторони). У цьому випадку можна дати інше визначення паралельності для нейтральної геометрії. Якщо є дуже близькі паралельні до даної прямої, їх називають асимптотично паралельними або паралельними до межі. Для променів відношення асимптотичної паралельності є відношенням еквівалентності, яке включає термінальне відношення еквівалентності. (uk)
|
foaf:depiction
| |
dct:subject
| |
Wikipage page ID
| |
Wikipage revision ID
| |
Link from a Wikipage to another Wikipage
| |
sameAs
| |
dbp:wikiPageUsesTemplate
| |
thumbnail
| |
has abstract
| - In neutral or absolute geometry, and in hyperbolic geometry, there may be many lines parallel to a given line through a point not on line ; however, in the plane, two parallels may be closer to than all others (one in each direction of ). Thus it is useful to make a new definition concerning parallels in neutral geometry. If there are closest parallels to a given line they are known as the limiting parallel, asymptotic parallel or horoparallel (horo from Greek: ὅριον — border). For rays, the relation of limiting parallel is an equivalence relation, which includes the equivalence relation of being coterminal. If, in a hyperbolic triangle, the pairs of sides are limiting parallel, then the triangle is an ideal triangle. (en)
- 극한평행(極限平行, Limiting parallelism)은 쌍곡기하학에서 존재하는 무한한 평행선 가운데 하나를 일컫는 말이다. 쌍곡기하학에서 직선 l위에 없는 점 P에 대해, P를 지나면서 l과 교차하지 않는 평행선은 무한히 많이 존재한다. 그러나 그 중에서 l의 한쪽 끝에서 거리가 0으로 접근하는 평행선은 각각의 방향에 대해 하나씩 존재하는데, 이러한 관계를 극한평행이라고 하고 극한평행인 평행선을 극한평행선이라고 한다. (ko)
- В нейтральной или абсолютной геометрии и в геометрии Лобачевского могут иметься много прямых, параллельных данной прямой и проходящих через точку вне этой прямой. Однако две параллельные могут быть ближе к , чем остальные (по одной с каждой стороны). Имеет смысл в этом случаен дать другое определение параллельности для нейтральной геометрии. Если имеются очень близкие параллельные к данной прямой, их называют асимптотически параллельными или параллельными в пределе. Для лучей отношение асимптотической параллельности является отношением эквивалентности, которое включает терминальное отношение эквивалентности. Асимптотические параллельные могут образовывать две или три стороны асимптотического треугольника. (ru)
- У нейтральній або абсолютній геометрії і в геометрії Лобачевського може бути багато прямих, які паралельні даній прямій і таких, що проходять через точку за межами цієї прямої. Однак дві паралельні можуть бути ближчими до , ніж інші прямі (по одній з кожної сторони). У цьому випадку можна дати інше визначення паралельності для нейтральної геометрії. Якщо є дуже близькі паралельні до даної прямої, їх називають асимптотично паралельними або паралельними до межі. Для променів відношення асимптотичної паралельності є відношенням еквівалентності, яке включає термінальне відношення еквівалентності. Асимптотичні паралельні можуть утворювати дві або три сторони асимптотичного трикутника. (uk)
|
prov:wasDerivedFrom
| |
page length (characters) of wiki page
| |
foaf:isPrimaryTopicOf
| |
is Link from a Wikipage to another Wikipage
of | |
is foaf:primaryTopic
of | |