About: Lindley's paradox     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : yago:Statement106722453, within Data Space : dbpedia.demo.openlinksw.com associated with source document(s)
QRcode icon
http://dbpedia.demo.openlinksw.com/c/6JxDEx9N87

Lindley's paradox is a counterintuitive situation in statistics in which the Bayesian and frequentist approaches to a hypothesis testing problem give different results for certain choices of the prior distribution. The problem of the disagreement between the two approaches was discussed in Harold Jeffreys' 1939 textbook; it became known as Lindley's paradox after Dennis Lindley called the disagreement a paradox in a 1957 paper.

AttributesValues
rdf:type
rdfs:label
  • Lindley's paradox (en)
  • Paradoks Lindleya (pl)
  • Парадокс Линдли (ru)
  • Парадокс Ліндлі (uk)
rdfs:comment
  • Lindley's paradox is a counterintuitive situation in statistics in which the Bayesian and frequentist approaches to a hypothesis testing problem give different results for certain choices of the prior distribution. The problem of the disagreement between the two approaches was discussed in Harold Jeffreys' 1939 textbook; it became known as Lindley's paradox after Dennis Lindley called the disagreement a paradox in a 1957 paper. (en)
  • Paradoks Lindleya – pozorny paradoks polegający na rozbieżności rezultatów testu hipotezy w oparciu o te same dane pomiędzy metodami wnioskowania częstościowego i bayesowskiego w statystyce. Pierwsze podejście oszacowuje prawdopodobieństwo ekstremalnych danych przy założeniu hipotezy zerowej: Drugie podejście oszacowuje prawdopodobieństwo obu hipotez przy założeniu danych: Choć obie perspektywy są równie poprawne arytmetycznie, odpowiadają na inne pytania, przez co mogą uzyskiwać różne odpowiedzi. (pl)
  • Парадокс Ліндлі — це парадоксальна ситуація в статистиці, в якій Баєсові та частотні підходи до перевірки статистичних гіпотез дають різні результати для певного вибору апріорної ймовірності. Проблема розбіжностей між двома підходами була обговорена в підручнику Гарольда Джеффріса 1939 року; він став відомий як парадокс Ліндлі після того, як назвав це неузгодження парадоксом у роботі 1957 року. (uk)
  • Парадокс Линдли — это контринтуитивная ситуация в статистике, при которой байесовский и подходы к задаче проверки гипотез дают различные результаты при определённых выборах априорного распределения. Проблема разногласия между двумя подходами обсуждалась в книге Гарольда Джеффриса 1939 года. Проблема стала известна как парадокс Линдли после того, как Деннис Линдли высказал несогласие с парадоксом в статье 1957. (ru)
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
sameAs
dbp:wikiPageUsesTemplate
has abstract
  • Lindley's paradox is a counterintuitive situation in statistics in which the Bayesian and frequentist approaches to a hypothesis testing problem give different results for certain choices of the prior distribution. The problem of the disagreement between the two approaches was discussed in Harold Jeffreys' 1939 textbook; it became known as Lindley's paradox after Dennis Lindley called the disagreement a paradox in a 1957 paper. Although referred to as a paradox, the differing results from the Bayesian and frequentist approaches can be explained as using them to answer fundamentally different questions, rather than actual disagreement between the two methods. Nevertheless, for a large class of priors the differences between the frequentist and Bayesian approach are caused by keeping the significance level fixed: as even Lindley recognized, "the theory does not justify the practice of keeping the significance level fixed'' and even "some computations by Prof. Pearson in the discussion to that paper emphasized how the significance level would have to change with the sample size, if the losses and prior probabilities were kept fixed.'' In fact, if the critical value increases with the sample size suitably fast, then the disagreement between the frequentist and Bayesian approaches becomes negligible as the sample size increases. (en)
  • Paradoks Lindleya – pozorny paradoks polegający na rozbieżności rezultatów testu hipotezy w oparciu o te same dane pomiędzy metodami wnioskowania częstościowego i bayesowskiego w statystyce. Pierwsze podejście oszacowuje prawdopodobieństwo ekstremalnych danych przy założeniu hipotezy zerowej: Drugie podejście oszacowuje prawdopodobieństwo obu hipotez przy założeniu danych: Choć obie perspektywy są równie poprawne arytmetycznie, odpowiadają na inne pytania, przez co mogą uzyskiwać różne odpowiedzi. Wczesne omówienie problemu przedstawił m.in. Jeffreys w 1939, a jego najbardziej znaną prezentację jako „paradoks” opublikował w 1957 Lindley (stąd druga stosowana nazwa: paradoks Jeffreysa-Lindleya). Niezgodność może pojawić się niezależnie od tego, czy w podejściu bayesowskim używano subiektywnego prawdopodobieństwa zaczątkowego. W badaniu o wysokiej mocy statystycznej silna prawoskośność rozkładu wartości p dla hipotezy zerowej sprawia, że wartości poniżej progu istotności mogą być bardziej prawdopodobne dla hipotezy zerowej, nawet o ortodoksyjnie nieinformatywnym rozkładzie jednostajnym. Test częstościowy zakwalifikuje je jednak jako „istotną statystycznie” przesłankę na rzecz przyjęcia, że hipoteza zerowa jest fałszywa. W ocenie Lindleya, „teoria statystyczna nie znajduje usprawiedliwienia dla mechanicznej praktyki stosowania jednego kryterium istotności”. Późniejsi autorzy omówili problem m.in. w kontekście fizyki, uczenia maszynowego, finansów, czy epidemiologii. Pułapki interpretacyjne, jakie tworzy, mogą być częściowo łagodzone przez przedstawianie w badaniach miar wielkości efektu, stosowanie przedziałów ufności, oraz testowanie konkretnych hipotez alternatywnych zamiast hipotezy zerowej (do czego służą procedury takie jak testy równoważności). (pl)
  • Парадокс Ліндлі — це парадоксальна ситуація в статистиці, в якій Баєсові та частотні підходи до перевірки статистичних гіпотез дають різні результати для певного вибору апріорної ймовірності. Проблема розбіжностей між двома підходами була обговорена в підручнику Гарольда Джеффріса 1939 року; він став відомий як парадокс Ліндлі після того, як назвав це неузгодження парадоксом у роботі 1957 року. Хоч це й іменується парадоксом, різні результати від Баєсових та частотних підходів пояснюються як використання їх для відповіді на принципово різні питання, а не фактичні розбіжності між двома методами. Тим не менше, для великого класу приорітетів відмінності між частотним і Баєсовсим підходом обумовлені підтриманням рівня значущості: як навіть Ліндлі визнав, «теорія не виправдовує практику збереження фіксованого рівня значущості», і навіть «деякі Розрахунки професора Пірсона в обговоренні цього документа підкреслювали, яким чином рівень значущості повинен змінюватися з розміром вибірки, якщо б втрати та попередні імовірності були фіксовані.» Фактично, якщо критичне значення разом з розміром вибірки зростає досить швидко, то розбіжність між частотним і Байєсовим підходами стає незначною, оскільки розмір вибірки збільшується. (uk)
  • Парадокс Линдли — это контринтуитивная ситуация в статистике, при которой байесовский и подходы к задаче проверки гипотез дают различные результаты при определённых выборах априорного распределения. Проблема разногласия между двумя подходами обсуждалась в книге Гарольда Джеффриса 1939 года. Проблема стала известна как парадокс Линдли после того, как Деннис Линдли высказал несогласие с парадоксом в статье 1957. Хотя ситуация описывается как парадокс, различие байесовского и частотного подходов можно объяснить как использования их для ответа на фундаментально различные вопросы, а не действительного разногласия между двумя методами. Как бы то ни было, для большого класса априорные разности между частотным и байесовским подходами вызваны сохранением уровня значимости. Как Линдли понял: «теория не может обосновать практику сохранения уровня значимости» и даже «некоторые вычисления, сделанные профессором Пирсоном в обсуждении этой статьи подчёркивают, насколько уровень значимости может меняться с изменением размера выборки, если потери и априорные вероятности остаются неизменными». Фактически, если критичное значение растёт с ростом размера выборки достаточно быстро, рассогласование между частотным и байесовским подходами становится ничтожным. (ru)
gold:hypernym
prov:wasDerivedFrom
page length (characters) of wiki page
foaf:isPrimaryTopicOf
is Link from a Wikipage to another Wikipage of
is Wikipage redirect of
is known for of
is known for of
is foaf:primaryTopic of
Faceted Search & Find service v1.17_git147 as of Sep 06 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3331 as of Sep 2 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (378 GB total memory, 52 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software