rdfs:comment
| - 此頁面列出了所有的歐幾里得空間、雙曲空間和球形空間的正圖形或正多胞形。施萊夫利符號可以描述每一個正圖形或正多胞形,他被廣泛使用如下面的每一個緊湊的參考名稱。 正圖形或正多胞形可由其維度分類,也可以分成凸、非凸(星形、扭歪、複合或凹)和無窮等形式。非凸形式(或凹形式)使用與凸形式相同的頂點,但面(或邊)有相交。無限的形式則是在一較低維的歐幾里得空間中密鋪(鑲嵌或堆砌)。 無限的形式可以擴展到密鋪雙曲空間。雙曲空間是和正常的空間有相同的規模,但平行線在一定的距離內會分岔得越來越遠。這使得頂點值可以存在負角度的缺陷,例如製作一個由個正三角形組成的頂點,它們可以被平放。它不能在普通平面上完成的,但可以在一個雙曲平面上構造。 (zh)
- Ĉi tio estas listo de la regulaj hiperpluredroj en eŭklida, sfera kaj hiperbola spacoj. La simbolo de Schläfli priskribas ĉiun regulan hiperpluredron kaj estas uzata kiel referenca nomo por ĉiu hiperpluredro. La regulaj hiperpluredroj estas grupitaj laŭ dimensio kaj subgrupitaj je konveksaj, nekonveksaj kaj malfiniaj formoj. Nekonveksa (formoj, formas) uzi la samaj verticoj kiel la konveksaj formoj, sed havas sekcantajn facetojn. Malfiniaj formoj kahelas spacon de dimensio je 1 pli malgranda. (eo)
- This article lists the regular polytopes and regular polytope compounds in Euclidean, spherical and hyperbolic spaces. The Schläfli symbol describes every regular tessellation of an n-sphere, Euclidean and hyperbolic spaces. A Schläfli symbol describing an n-polytope equivalently describes a tessellation of an (n − 1)-sphere. In addition, the symmetry of a regular polytope or tessellation is expressed as a Coxeter group, which Coxeter expressed identically to the Schläfli symbol, except delimiting by square brackets, a notation that is called Coxeter notation. Another related symbol is the Coxeter-Dynkin diagram which represents a symmetry group with no rings, and the represents regular polytope or tessellation with a ring on the first node. For example, the cube has Schläfli symbol {4,3}, (en)
- Questa voce elenca i politopi regolari negli spazi euclidei, sferici e iperbolici.La notazione di Schläfli descrive ogni politopo regolare, ed è usata ampiamente nel seguito come abbreviazione per ciascuno di essi. I politopi regolari sono raggruppati per dimensione e divisi in forme convesse, non convesse e infinite. Le forme non convesse usano gli stessi vertici delle forme convesse, ma hanno che si intersecano. Le forme infinite tassellano uno spazio euclideo di dimensione inferiore. (it)
- Эта страница содержит список правильных многомерных многогранников (политопов) и правильных cоединений этих многогранников в евклидовом, сферическом и гиперболическом пространствах разных размерностей. Правильные многогранники сгруппированы по размерности, а затем по форме — выпуклые, невыпуклые и бесконечные. Невыпуклые виды используют те же вершины, что и выпуклые, но имеют пересекающиеся фасеты (грани максимальной размерности = размерности пространства – 1). Бесконечные виды замощают евклидово пространство на единицу меньшей размерности. (ru)
|