About: Mahler's 3/2 problem     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : yago:Speculation105891783, within Data Space : dbpedia.demo.openlinksw.com associated with source document(s)
QRcode icon
http://dbpedia.demo.openlinksw.com/c/3STx6RcYw6

In mathematics, Mahler's 3/2 problem concerns the existence of "Z-numbers". A Z-number is a real number x such that the fractional parts of are less than 1/2 for all positive integers n. Kurt Mahler conjectured in 1968 that there are no Z-numbers. More generally, for a real number α, define Ω(α) as Mahler's conjecture would thus imply that Ω(3/2) exceeds 1/2. Flatto, Lagarias, and Pollington showed that for rational p/q > 1 in lowest terms.

AttributesValues
rdf:type
rdfs:label
  • Mahler's 3/2 problem (en)
  • Mahlers 3/2-problem (sv)
rdfs:comment
  • In mathematics, Mahler's 3/2 problem concerns the existence of "Z-numbers". A Z-number is a real number x such that the fractional parts of are less than 1/2 for all positive integers n. Kurt Mahler conjectured in 1968 that there are no Z-numbers. More generally, for a real number α, define Ω(α) as Mahler's conjecture would thus imply that Ω(3/2) exceeds 1/2. Flatto, Lagarias, and Pollington showed that for rational p/q > 1 in lowest terms. (en)
  • Inom matematiken är Mahlers 3/2-problem ett problem gällande existensen av så kallade "Z-tal". Ett Z-tal är ett reellt tal x sådant att dess är mindre än 1/2 för alla naturliga tal n. förmodade 1968 att det inte finns några Z-tal. Mer generellt, för ett reellt α, definiera Ω(α) som Mahles förmodan säger alltså att Ω(3/2) är större än 1/2. Flatto, och Pollington bevisade att för rationella p/q. (sv)
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
sameAs
dbp:wikiPageUsesTemplate
has abstract
  • In mathematics, Mahler's 3/2 problem concerns the existence of "Z-numbers". A Z-number is a real number x such that the fractional parts of are less than 1/2 for all positive integers n. Kurt Mahler conjectured in 1968 that there are no Z-numbers. More generally, for a real number α, define Ω(α) as Mahler's conjecture would thus imply that Ω(3/2) exceeds 1/2. Flatto, Lagarias, and Pollington showed that for rational p/q > 1 in lowest terms. (en)
  • Inom matematiken är Mahlers 3/2-problem ett problem gällande existensen av så kallade "Z-tal". Ett Z-tal är ett reellt tal x sådant att dess är mindre än 1/2 för alla naturliga tal n. förmodade 1968 att det inte finns några Z-tal. Mer generellt, för ett reellt α, definiera Ω(α) som Mahles förmodan säger alltså att Ω(3/2) är större än 1/2. Flatto, och Pollington bevisade att för rationella p/q. (sv)
prov:wasDerivedFrom
page length (characters) of wiki page
foaf:isPrimaryTopicOf
is Link from a Wikipage to another Wikipage of
is Wikipage redirect of
is foaf:primaryTopic of
Faceted Search & Find service v1.17_git147 as of Sep 06 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3331 as of Sep 2 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (378 GB total memory, 49 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software