About: Mahler volume     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : yago:WikicatGeometricInequalities, within Data Space : dbpedia.demo.openlinksw.com associated with source document(s)
QRcode icon
http://dbpedia.demo.openlinksw.com/c/2YS1j8QftV

In convex geometry, the Mahler volume of a centrally symmetric convex body is a dimensionless quantity that is associated with the body and is invariant under linear transformations. It is named after German-English mathematician Kurt Mahler. It is known that the shapes with the largest possible Mahler volume are the balls and solid ellipsoids; this is now known as the Blaschke–Santaló inequality. The still-unsolved Mahler conjecture states that the minimum possible Mahler volume is attained by a hypercube.

AttributesValues
rdf:type
rdfs:label
  • マーラー体積 (ja)
  • Mahler volume (en)
  • Объём Малера (ru)
rdfs:comment
  • In convex geometry, the Mahler volume of a centrally symmetric convex body is a dimensionless quantity that is associated with the body and is invariant under linear transformations. It is named after German-English mathematician Kurt Mahler. It is known that the shapes with the largest possible Mahler volume are the balls and solid ellipsoids; this is now known as the Blaschke–Santaló inequality. The still-unsolved Mahler conjecture states that the minimum possible Mahler volume is attained by a hypercube. (en)
  • (convex geometry)では、(central symmetry)な(convex body)のマーラー体積(Mahler volume)とは、凸体に付随する無次元量で、線型変換の下に不変な量をいう。この名称はドイツ-イギリスの数学者(Kurt Mahler)にちなんでいる。最も大きなマーラー体積を持つ形は球や楕円体であることは知られていて、現在では、ブラシュケ・サンタローの不等式(Blaschke–Santaló inequality)となっている。未解決なマーラー予想(Mahler conjecture)とは、最小なマーラー体積は超立方体によって得られるのではないかという予想である。 (ja)
  • Объём Малера — характеристика Центрально-симметричного выпуклого тела.Названа в честь . Нерешённая гипотеза Малера утверждает, что минимальный возможный объём Малера имеет куб. (ru)
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Link from a Wikipage to an external page
sameAs
dbp:wikiPageUsesTemplate
authorlink
  • Luis Santaló (en)
first
  • Luis (en)
last
  • Santaló (en)
year
has abstract
  • In convex geometry, the Mahler volume of a centrally symmetric convex body is a dimensionless quantity that is associated with the body and is invariant under linear transformations. It is named after German-English mathematician Kurt Mahler. It is known that the shapes with the largest possible Mahler volume are the balls and solid ellipsoids; this is now known as the Blaschke–Santaló inequality. The still-unsolved Mahler conjecture states that the minimum possible Mahler volume is attained by a hypercube. (en)
  • (convex geometry)では、(central symmetry)な(convex body)のマーラー体積(Mahler volume)とは、凸体に付随する無次元量で、線型変換の下に不変な量をいう。この名称はドイツ-イギリスの数学者(Kurt Mahler)にちなんでいる。最も大きなマーラー体積を持つ形は球や楕円体であることは知られていて、現在では、ブラシュケ・サンタローの不等式(Blaschke–Santaló inequality)となっている。未解決なマーラー予想(Mahler conjecture)とは、最小なマーラー体積は超立方体によって得られるのではないかという予想である。 (ja)
  • Объём Малера — характеристика Центрально-симметричного выпуклого тела.Названа в честь . Нерешённая гипотеза Малера утверждает, что минимальный возможный объём Малера имеет куб. (ru)
gold:hypernym
prov:wasDerivedFrom
page length (characters) of wiki page
foaf:isPrimaryTopicOf
is Link from a Wikipage to another Wikipage of
is Wikipage redirect of
Faceted Search & Find service v1.17_git147 as of Sep 06 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3331 as of Sep 2 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (378 GB total memory, 52 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software