About: Martingale (probability theory)     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : yago:StochasticProcess113561896, within Data Space : dbpedia.demo.openlinksw.com associated with source document(s)
QRcode icon
http://dbpedia.demo.openlinksw.com/c/8RsAqVvVnK

In probability theory, a martingale is a sequence of random variables (i.e., a stochastic process) for which, at a particular time, the conditional expectation of the next value in the sequence is equal to the present value, regardless of all prior values.

AttributesValues
rdf:type
rdfs:label
  • Martingala (ca)
  • Martingal (de)
  • Martingala (es)
  • Martingale (calcul stochastique) (fr)
  • Martingala (matematica) (it)
  • Martingale (probability theory) (en)
  • 마팅게일 (ko)
  • マルチンゲール (ja)
  • Martingaal (nl)
  • Martyngał (rachunek prawdopodobieństwa) (pl)
  • Martingale (pt)
  • Мартингал (ru)
  • Martingal (sannolikhetsteori) (sv)
  • Мартингал (uk)
  • 鞅 (概率论) (zh)
rdfs:comment
  • En teoría de probabilidad, un proceso estocástico de tipo martingala (galicismo de martingale) es una secuencia de variables aleatorias en la que, en un tiempo dado, la esperanza condicional del siguiente valor de la secuencia, dado todos los valores anteriores, es igual al valor presente. (es)
  • In probability theory, a martingale is a sequence of random variables (i.e., a stochastic process) for which, at a particular time, the conditional expectation of the next value in the sequence is equal to the present value, regardless of all prior values. (en)
  • 確率論において、マルチンゲール(英: martingale)とは確率過程の性質の一つであり、過去の情報に制限して計算した期待値と未来の期待値が同一になる性質である。この性質は公平な賭け事を行っているときの持ち金の変遷に現れるものだと考えられており、マルチンゲールという名前も賭けにおける戦略からとられたものである。 数学的には、情報というのは{Ft}であたえられ、未来における期待値はこの情報による条件付期待値となる。 (ja)
  • 확률론에서 마팅게일(영어: martingale 마턴게일[*], 프랑스어: martingale 마르탱갈[*])은 확률 과정의 하나로, 과거의 모든 정보를 알고 있다면 미래의 기댓값이 현재 값과 동일한 과정이다. (ko)
  • In de kansrekening modelleert een martingaal de tijdsevolutie van een toevalsgrootheid waarbij steeds, gegeven het verloop tot op het heden, de voorwaardelijke verwachting van toekomstige waarden gelijk is aan de huidige waarde. Anders gezegd: de verwachte verdere toename of afname hangt niet af van het eerdere verloop en is steeds nul. (nl)
  • Nella teoria della probabilità, una martingala è un processo stocastico , indicizzato da un parametro crescente (spesso interpretabile come tempo), con la seguente proprietà: per ogni , l'attesa di condizionata rispetto ai valori di , è uguale ad . Il più noto esempio di martingala, in cui il parametro è continuo, è senz'altro il moto browniano. (it)
  • Martyngał – proces stochastyczny (ciąg zmiennych losowych), w którym warunkowa wartość oczekiwana zmiennej w momencie gdy znamy wartości do jakiegoś wcześniejszego momentu jest równa wartości w momencie (pl)
  • Мартинга́л в теории случайных процессов — такой случайный процесс, что наилучшим (в смысле среднеквадратичного) предсказанием поведения процесса в будущем является его настоящее состояние. (ru)
  • Inom sannolikhetsteori är en martingal en stokastisk process som har den speciella egenskapen att det betingade väntevärdet av en observation av processen vid tiden t givet observationer fram till tiden s, med s < t, är lika med det observerade värdet vid tidpunkten s. (sv)
  • Мартинга́л в теорії ймовірностей — це випадковий процес, математичне сподівання якого в майбутній час рівне значенню процесу в цей час. Теорія мартингалів є одним з основних розділів сучасної теорії ймовірностей і має широке застосування у стохастичному моделюванні, зокрема у сфері фінансів. (uk)
  • 在機率论中,平賭(英語:martingale)是满足下述条件的随机过程:已知过去某一 时刻 s 以及之前所有时刻的观测值,若某一时刻 t 的观测值的条件期望等於过去某一时刻 s 的观测值,则称这一随机过程是平賭。而於博弈论中,平賭經常用來作為公平博弈的数学模型。 (zh)
  • Als Martingal bezeichnet man in der Wahrscheinlichkeitstheorie einen stochastischen Prozess, der über den bedingten Erwartungswert definiert wird und sich dadurch auszeichnet, dass er im Mittel fair ist. Martingale entstehen auf natürliche Weise aus der Modellierung von fairen Glücksspielen. Vereinfacht kann man sagen, ein Martingal beschreibt ein Nullsummenspiel. Martingale wurden von Paul Lévy in die Mathematik eingeführt. (de)
  • Une martingale est une séquence de variables aléatoires (autrement dit un processus stochastique), telles que l'espérance mathématique à l'instant , conditionnellement à l'information disponible à un moment préalable , notée , vaut (avec ). En particulier, dans un processus discret (t entier), . Une martingale peut modéliser les gains / pertes accumulés par un joueur au cours de répétitions indépendantes d'un jeu de hasard à espérance nulle (même si le joueur s'autorise à modifier sa mise en fonction des gains passés), d'où l'emprunt du terme martingale au monde du jeu. (fr)
  • Em teoria das probabilidades, um martingale é um modelo de jogo honesto (fair game) em que o conhecimento de eventos passados nunca ajuda a prever os ganhos futuros e apenas o evento atual importa. Em particular, um martingale é uma sequência de variáveis aleatórias (isto é, um processo estocástico) para o qual, a qualquer tempo específico na sequência observada, a esperança do próximo valor na sequência é igual ao valor presentemente observado, mesmo dado o conhecimento de todos os valores anteriormente observados. (pt)
foaf:depiction
  • http://commons.wikimedia.org/wiki/Special:FilePath/HittingTimes1.png
  • http://commons.wikimedia.org/wiki/Special:FilePath/Martingale1.svg
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Faceted Search & Find service v1.17_git147 as of Sep 06 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3331 as of Sep 2 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (378 GB total memory, 52 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software