About: Maximal set     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : owl:Thing, within Data Space : dbpedia.demo.openlinksw.com associated with source document(s)
QRcode icon
http://dbpedia.demo.openlinksw.com/c/5TG2wZxyUR

In recursion theory, the mathematical theory of computability, a maximal set is a coinfinite recursively enumerable subset A of the natural numbers such that for every further recursively enumerable subset B of the natural numbers, either B is cofinite or B is a finite variant of A or B is not a superset of A. This gives an easy definition within the lattice of the recursively enumerable sets.

AttributesValues
rdfs:label
  • Maximal set (en)
rdfs:comment
  • In recursion theory, the mathematical theory of computability, a maximal set is a coinfinite recursively enumerable subset A of the natural numbers such that for every further recursively enumerable subset B of the natural numbers, either B is cofinite or B is a finite variant of A or B is not a superset of A. This gives an easy definition within the lattice of the recursively enumerable sets. (en)
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
sameAs
dbp:wikiPageUsesTemplate
has abstract
  • In recursion theory, the mathematical theory of computability, a maximal set is a coinfinite recursively enumerable subset A of the natural numbers such that for every further recursively enumerable subset B of the natural numbers, either B is cofinite or B is a finite variant of A or B is not a superset of A. This gives an easy definition within the lattice of the recursively enumerable sets. Maximal sets have many interesting properties: they are simple, hypersimple, and r-maximal; the latter property says that every recursive set R contains either only finitely many elements of the complement of A or almost all elements of the complement of A. There are r-maximal sets that are not maximal; some of them do even not have maximal supersets. Myhill (1956) asked whether maximal sets exist and Friedberg (1958) constructed one. Soare (1974) showed that the maximal sets form an orbit with respect to automorphism of the recursively enumerable sets under inclusion (modulo finite sets). On the one hand, every automorphism maps a maximal set A to another maximal set B; on the other hand, for every two maximal sets A, B there is an automorphism of the recursively enumerable sets such that A is mapped to B. (en)
prov:wasDerivedFrom
page length (characters) of wiki page
foaf:isPrimaryTopicOf
is Link from a Wikipage to another Wikipage of
is Wikipage redirect of
is Wikipage disambiguates of
is foaf:primaryTopic of
Faceted Search & Find service v1.17_git147 as of Sep 06 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3331 as of Sep 2 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (378 GB total memory, 58 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software