About: Measurable cardinal     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : yago:Whole100003553, within Data Space : dbpedia.demo.openlinksw.com associated with source document(s)
QRcode icon
http://dbpedia.demo.openlinksw.com/c/6HLyx13paj

In mathematics, a measurable cardinal is a certain kind of large cardinal number. In order to define the concept, one introduces a two-valued measure on a cardinal κ, or more generally on any set. For a cardinal κ, it can be described as a subdivision of all of its subsets into large and small sets such that κ itself is large, ∅ and all singletons {α}, α ∈ κ are small, complements of small sets are large and vice versa. The intersection of fewer than κ large sets is again large. The concept of a measurable cardinal was introduced by Stanislaw Ulam in 1930.

AttributesValues
rdf:type
rdfs:label
  • Měřitelný kardinál (cs)
  • Cardinal mesurable (fr)
  • 가측 기수 (ko)
  • Measurable cardinal (en)
  • Liczba mierzalna (pl)
  • Cardinal mensurável (pt)
  • 可測基數 (zh)
rdfs:comment
  • Měřitelný kardinál je matematický pojem z oblasti teorie množin (kardinální aritmetiky). Patří mezi velké kardinály. (cs)
  • En mathématiques, un cardinal mesurable est un cardinal sur lequel existe une mesure définie pour tout sous-ensemble. Cette propriété fait qu'un tel cardinal est un grand cardinal. (fr)
  • 집합론에서 가측 기수(可測基數, 영어: measurable cardinal)는 기본 매장으로 정의될 수 있는 기수이다. 큰 기수의 하나이다. (ko)
  • Liczba mierzalna – nieprzeliczalna liczba kardynalna na której istnieje -zupełny niegłówny ultrafiltr. Liczba rzeczywiście mierzalna to nieprzeliczalna liczba kardynalna na której istnieje -addytywna miara, która znika na punktach i która mierzy wszystkie podzbiory Liczby mierzalne są punktem wyjściowym dla części hierarchii dużych liczb kardynalnych związanej z zanurzeniami elementarnymi V w model wewnętrzny M. (pl)
  • Em matemática, especialmente em teoria dos conjuntos, um cardinal não enumerável é denominado mensurável se existe uma medida -aditiva, valorada em (ou seja, bivalente) e náo trivial sobre o conjunto potência . Cardinal mensurável é considerada uma propriedade de grande cardinal. (pt)
  • 數學上,可測基數是一類大基數。為了定義此概念,考慮基數 κ 上僅取兩值(0 或 1)的測度。如此的測度可看成將 κ 的所有子集分成兩類:大和小,使得 κ 本身為大,但 ∅ 和所有單元素集合 皆為小,且小集的補集為大,反之亦然。同時還要求少於 κ 個大集的交集仍為大。 具有以上二值測度的不可數基數是大基數,ZFC 無法證明其存在。 可測基數的概念最早由斯塔尼斯拉夫·烏拉姆於 1930 年提出。 (zh)
  • In mathematics, a measurable cardinal is a certain kind of large cardinal number. In order to define the concept, one introduces a two-valued measure on a cardinal κ, or more generally on any set. For a cardinal κ, it can be described as a subdivision of all of its subsets into large and small sets such that κ itself is large, ∅ and all singletons {α}, α ∈ κ are small, complements of small sets are large and vice versa. The intersection of fewer than κ large sets is again large. The concept of a measurable cardinal was introduced by Stanislaw Ulam in 1930. (en)
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Link from a Wikipage to an external page
sameAs
Faceted Search & Find service v1.17_git147 as of Sep 06 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3331 as of Sep 2 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (378 GB total memory, 51 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software