About: Metric differential     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : yago:Whole100003553, within Data Space : dbpedia.demo.openlinksw.com associated with source document(s)
QRcode icon
http://dbpedia.demo.openlinksw.com/c/AUFhJeFLKm

In mathematical analysis, a metric differential is a generalization of a derivative for a Lipschitz continuous function defined on a Euclidean space and taking values in an arbitrary metric space. With this definition of a derivative, one can generalize Rademacher's theorem to metric space-valued Lipschitz functions.

AttributesValues
rdf:type
rdfs:label
  • Metrisches Differential (de)
  • Metric differential (en)
  • 距離微分 (ja)
  • Метрический дифференциал (ru)
rdfs:comment
  • Das metrische Differential ist ein Ersatz für den Ableitungsbegriff für Abbildungen in metrische Räume. Es wurde 1994 vom deutschen Mathematiker Bernd Kirchheim in einem Aufsatz über die Regularität von Hausdorff-Maßen eingeführt.Die Hauptanwendung des metrischen Differentials besteht in der Verallgemeinerung des Satzes von Rademacher von Funktionen zwischen euklidischen Räumen auf solche in allgemeine metrische Räume. (de)
  • In mathematical analysis, a metric differential is a generalization of a derivative for a Lipschitz continuous function defined on a Euclidean space and taking values in an arbitrary metric space. With this definition of a derivative, one can generalize Rademacher's theorem to metric space-valued Lipschitz functions. (en)
  • 数学の解析学の分野における距離微分(きょりびぶん、英: metric differential)とは、あるユークリッド空間上で定義され任意の距離空間に値を取るようなリプシッツ連続関数に対する、微分の概念の一般化である。この微分の定義のもとで、距離空間に値を取るリプシッツ関数へと、ラーデマッヘルの定理を一般化することが出来る。 (ja)
  • Метрический дифференциал — обобщение понятия производной на (липшицевы) отображения из евклидова пространства в произвольное метрическое пространство.Впервые рассмотрен Берндом Киркхаймом. Метрический дифференциал отображения в точке является нормой на и обычно обозначается . (ru)
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
sameAs
dbp:wikiPageUsesTemplate
has abstract
  • Das metrische Differential ist ein Ersatz für den Ableitungsbegriff für Abbildungen in metrische Räume. Es wurde 1994 vom deutschen Mathematiker Bernd Kirchheim in einem Aufsatz über die Regularität von Hausdorff-Maßen eingeführt.Die Hauptanwendung des metrischen Differentials besteht in der Verallgemeinerung des Satzes von Rademacher von Funktionen zwischen euklidischen Räumen auf solche in allgemeine metrische Räume. (de)
  • In mathematical analysis, a metric differential is a generalization of a derivative for a Lipschitz continuous function defined on a Euclidean space and taking values in an arbitrary metric space. With this definition of a derivative, one can generalize Rademacher's theorem to metric space-valued Lipschitz functions. (en)
  • 数学の解析学の分野における距離微分(きょりびぶん、英: metric differential)とは、あるユークリッド空間上で定義され任意の距離空間に値を取るようなリプシッツ連続関数に対する、微分の概念の一般化である。この微分の定義のもとで、距離空間に値を取るリプシッツ関数へと、ラーデマッヘルの定理を一般化することが出来る。 (ja)
  • Метрический дифференциал — обобщение понятия производной на (липшицевы) отображения из евклидова пространства в произвольное метрическое пространство.Впервые рассмотрен Берндом Киркхаймом. Метрический дифференциал отображения в точке является нормой на и обычно обозначается . (ru)
gold:hypernym
prov:wasDerivedFrom
page length (characters) of wiki page
foaf:isPrimaryTopicOf
is Link from a Wikipage to another Wikipage of
is foaf:primaryTopic of
Faceted Search & Find service v1.17_git147 as of Sep 06 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3331 as of Sep 2 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (378 GB total memory, 50 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software