About: Meyer wavelet     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : yago:Wave107352190, within Data Space : dbpedia.demo.openlinksw.com associated with source document(s)
QRcode icon
http://dbpedia.demo.openlinksw.com/c/7NnspPUAeW

The Meyer wavelet is an orthogonal wavelet proposed by Yves Meyer. As a type of a continuous wavelet, it has been applied in a number of cases, such as in adaptive filters, fractal random fields, and multi-fault classification. The Meyer wavelet is infinitely differentiable with infinite support and defined in frequency domain in terms of function as where There are many different ways for defining this auxiliary function, which yields variants of the Meyer wavelet.For instance, another standard implementation adopts The Meyer scale function is given by

AttributesValues
rdf:type
rdfs:label
  • Meyerova vlnka (cs)
  • Meyer wavelet (en)
rdfs:comment
  • Meyerova vlnka je ortogonální symetrická vlnka podobná Shannonově vlnce. Na rozdíl od ní však nedělí spektrum tak ostře. Existuje i její diskrétní aproximace. Vlnku lze použít pro CWT i DWT. Obvykle se počítá ve frekvenční oblasti. Vlastnosti: * symetrická * ortogonální, biortogonální * nemá kompaktní nosič (diskrétní aproximace má) (cs)
  • The Meyer wavelet is an orthogonal wavelet proposed by Yves Meyer. As a type of a continuous wavelet, it has been applied in a number of cases, such as in adaptive filters, fractal random fields, and multi-fault classification. The Meyer wavelet is infinitely differentiable with infinite support and defined in frequency domain in terms of function as where There are many different ways for defining this auxiliary function, which yields variants of the Meyer wavelet.For instance, another standard implementation adopts The Meyer scale function is given by (en)
foaf:depiction
  • http://commons.wikimedia.org/wiki/Special:FilePath/Meyer_wavelet.png
  • http://commons.wikimedia.org/wiki/Special:FilePath/Spectrum_Meyer_scalefunction.png
  • http://commons.wikimedia.org/wiki/Special:FilePath/Spectrum_Meyer_wavelet.png
dcterms:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Link from a Wikipage to an external page
sameAs
dbp:wikiPageUsesTemplate
thumbnail
has abstract
  • Meyerova vlnka je ortogonální symetrická vlnka podobná Shannonově vlnce. Na rozdíl od ní však nedělí spektrum tak ostře. Existuje i její diskrétní aproximace. Vlnku lze použít pro CWT i DWT. Obvykle se počítá ve frekvenční oblasti. Vlastnosti: * symetrická * ortogonální, biortogonální * nemá kompaktní nosič (diskrétní aproximace má) (cs)
  • The Meyer wavelet is an orthogonal wavelet proposed by Yves Meyer. As a type of a continuous wavelet, it has been applied in a number of cases, such as in adaptive filters, fractal random fields, and multi-fault classification. The Meyer wavelet is infinitely differentiable with infinite support and defined in frequency domain in terms of function as where There are many different ways for defining this auxiliary function, which yields variants of the Meyer wavelet.For instance, another standard implementation adopts The Meyer scale function is given by In the time domain, the waveform of the Meyer mother-wavelet has the shape as shown in the following figure: (en)
prov:wasDerivedFrom
page length (characters) of wiki page
foaf:isPrimaryTopicOf
is Link from a Wikipage to another Wikipage of
is foaf:primaryTopic of
Faceted Search & Find service v1.17_git147 as of Sep 06 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3332 as of Dec 5 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (378 GB total memory, 60 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software