About: Monge cone     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : yago:Statement106722453, within Data Space : dbpedia.demo.openlinksw.com associated with source document(s)
QRcode icon
http://dbpedia.demo.openlinksw.com/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FMonge_cone

In the mathematical theory of partial differential equations (PDE), the Monge cone is a geometrical object associated with a first-order equation. It is named for Gaspard Monge. In two dimensions, let be a PDE for an unknown real-valued function u in two variables x and y. Assume that this PDE is non-degenerate in the sense that and are not both zero in the domain of definition. Fix a point (x0, y0, z0) and consider solution functions u which have Each solution to (1) satisfying (2) determines the tangent plane to the graph

AttributesValues
rdf:type
rdfs:label
  • Monge cone (en)
rdfs:comment
  • In the mathematical theory of partial differential equations (PDE), the Monge cone is a geometrical object associated with a first-order equation. It is named for Gaspard Monge. In two dimensions, let be a PDE for an unknown real-valued function u in two variables x and y. Assume that this PDE is non-degenerate in the sense that and are not both zero in the domain of definition. Fix a point (x0, y0, z0) and consider solution functions u which have Each solution to (1) satisfying (2) determines the tangent plane to the graph (en)
dcterms:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Link from a Wikipage to an external page
sameAs
dbp:wikiPageUsesTemplate
author
  • Ivanov, A.B. (en)
id
  • m/m064630 (en)
title
  • Monge cone (en)
has abstract
  • In the mathematical theory of partial differential equations (PDE), the Monge cone is a geometrical object associated with a first-order equation. It is named for Gaspard Monge. In two dimensions, let be a PDE for an unknown real-valued function u in two variables x and y. Assume that this PDE is non-degenerate in the sense that and are not both zero in the domain of definition. Fix a point (x0, y0, z0) and consider solution functions u which have Each solution to (1) satisfying (2) determines the tangent plane to the graph through the point . As the pair (ux, uy) solving (1) varies, the tangent planes envelope a cone in R3 with vertex at , called the Monge cone. When F is quasilinear, the Monge cone degenerates to a single line called the Monge axis. Otherwise, the Monge cone is a proper cone since a nontrivial and non-coaxial one-parameter family of planes through a fixed point envelopes a cone. Explicitly, the original partial differential equation gives rise to a scalar-valued function on the cotangent bundle of R3, defined at a point (x,y,z) by Vanishing of F determines a curve in the projective plane with homogeneous coordinates (a:b:c). The dual curve is a curve in the projective tangent space at the point, and the affine cone over this curve is the Monge cone. The cone may have multiple branches, each one an affine cone over a simple closed curve in the projective tangent space. As the base point varies, the cone also varies. Thus the Monge cone is a cone field on R3. Finding solutions of (1) can thus be interpreted as finding a surface which is everywhere tangent to the Monge cone at the point. This is the method of characteristics. The technique generalizes to scalar first-order partial differential equations in n spatial variables; namely, Through each point , the Monge cone (or axis in the quasilinear case) is the envelope of solutions of the PDE with . (en)
prov:wasDerivedFrom
page length (characters) of wiki page
foaf:isPrimaryTopicOf
is Link from a Wikipage to another Wikipage of
is Wikipage redirect of
is foaf:primaryTopic of
Faceted Search & Find service v1.17_git139 as of Feb 29 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3330 as of Mar 19 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (378 GB total memory, 67 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software