About: Monodromy theorem     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : yago:Theorem106752293, within Data Space : dbpedia.demo.openlinksw.com associated with source document(s)
QRcode icon
http://dbpedia.demo.openlinksw.com/c/6ZQxsAc3bF

In complex analysis, the monodromy theorem is an important result about analytic continuation of a complex-analytic function to a larger set. The idea is that one can extend a complex-analytic function (from here on called simply analytic function) along curves starting in the original domain of the function and ending in the larger set. A potential problem of this analytic continuation along a curve strategy is there are usually many curves which end up at the same point in the larger set. The monodromy theorem gives sufficient conditions for analytic continuation to give the same value at a given point regardless of the curve used to get there, so that the resulting extended analytic function is well-defined and single-valued.

AttributesValues
rdf:type
rdfs:label
  • Monodromiesatz (de)
  • Théorème de monodromie (fr)
  • Monodromy theorem (en)
  • Теорема о монодромии (ru)
rdfs:comment
  • Der Monodromiesatz ist ein wichtiger mathematischer Satz aus dem Gebiet der Funktionentheorie und beschreibt die Homotopie-Invarianz der analytischen Fortsetzung einer holomorphen Funktion. (de)
  • Le théorème de monodromie est un outil puissant d'analyse complexe pour étendre une propriété locale (de germes) à une propriété globale (de fonction). On l'utilise par exemple dans certaines preuves des théorèmes de Picard pour inverser globalement la fonction j (invariant modulaire) aux points où sa dérivée est non nulle, alors que l'inversion n'est a priori que locale. (fr)
  • Теорема о монодромии дает достаточное условие существования прямого аналитического продолжения аналитической функции, то есть существования иной аналитической на большем множестве функции, совпадающей с изначальной на первоначальной области определения. (ru)
  • In complex analysis, the monodromy theorem is an important result about analytic continuation of a complex-analytic function to a larger set. The idea is that one can extend a complex-analytic function (from here on called simply analytic function) along curves starting in the original domain of the function and ending in the larger set. A potential problem of this analytic continuation along a curve strategy is there are usually many curves which end up at the same point in the larger set. The monodromy theorem gives sufficient conditions for analytic continuation to give the same value at a given point regardless of the curve used to get there, so that the resulting extended analytic function is well-defined and single-valued. (en)
foaf:depiction
  • http://commons.wikimedia.org/wiki/Special:FilePath/Imaginary_log_analytic_continuation.png
  • http://commons.wikimedia.org/wiki/Special:FilePath/Analytic_continuation_along_a_curve.png
  • http://commons.wikimedia.org/wiki/Special:FilePath/Homotopy_with_fixed_endpoints.png
dcterms:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Link from a Wikipage to an external page
sameAs
dbp:wikiPageUsesTemplate
thumbnail
title
  • Monodromy theorem (en)
urlname
  • MonodromyTheorem (en)
has abstract
  • Der Monodromiesatz ist ein wichtiger mathematischer Satz aus dem Gebiet der Funktionentheorie und beschreibt die Homotopie-Invarianz der analytischen Fortsetzung einer holomorphen Funktion. (de)
  • In complex analysis, the monodromy theorem is an important result about analytic continuation of a complex-analytic function to a larger set. The idea is that one can extend a complex-analytic function (from here on called simply analytic function) along curves starting in the original domain of the function and ending in the larger set. A potential problem of this analytic continuation along a curve strategy is there are usually many curves which end up at the same point in the larger set. The monodromy theorem gives sufficient conditions for analytic continuation to give the same value at a given point regardless of the curve used to get there, so that the resulting extended analytic function is well-defined and single-valued. Before stating this theorem it is necessary to define analytic continuation along a curve and study its properties. (en)
  • Le théorème de monodromie est un outil puissant d'analyse complexe pour étendre une propriété locale (de germes) à une propriété globale (de fonction). On l'utilise par exemple dans certaines preuves des théorèmes de Picard pour inverser globalement la fonction j (invariant modulaire) aux points où sa dérivée est non nulle, alors que l'inversion n'est a priori que locale. (fr)
  • Теорема о монодромии дает достаточное условие существования прямого аналитического продолжения аналитической функции, то есть существования иной аналитической на большем множестве функции, совпадающей с изначальной на первоначальной области определения. (ru)
prov:wasDerivedFrom
page length (characters) of wiki page
foaf:isPrimaryTopicOf
is Link from a Wikipage to another Wikipage of
is Wikipage redirect of
is foaf:primaryTopic of
Faceted Search & Find service v1.17_git147 as of Sep 06 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3332 as of Dec 5 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (378 GB total memory, 76 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software