About: Moore space (topology)     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : owl:Thing, within Data Space : dbpedia.demo.openlinksw.com associated with source document(s)
QRcode icon
http://dbpedia.demo.openlinksw.com/c/2q74SKfbt3

In mathematics, more specifically point-set topology, a Moore space is a developable regular Hausdorff space. That is, a topological space X is a Moore space if the following conditions hold: * Any two distinct points can be separated by neighbourhoods, and any closed set and any point in its complement can be separated by neighbourhoods. (X is a regular Hausdorff space.) * There is a countable collection of open covers of X, such that for any closed set C and any point p in its complement there exists a cover in the collection such that every neighbourhood of p in the cover is disjoint from C. (X is a developable space.)

AttributesValues
rdfs:label
  • Espace de Moore (topologie) (fr)
  • 무어 공간 (ko)
  • Moore space (topology) (en)
rdfs:comment
  • ( 다른 뜻에 대해서는 무어 공간 (대수적 위상수학) 문서를 참고하십시오.) 일반위상수학에서 무어 공간(Moore空間, 영어: Moore space)은 거리화 가능 공간과 유사한 성질을 갖는 위상 공간이다. 일부 추가 조건 아래, 무어 공간과 거리화 가능 공간의 조건은 서로 동치이다. (ko)
  • In mathematics, more specifically point-set topology, a Moore space is a developable regular Hausdorff space. That is, a topological space X is a Moore space if the following conditions hold: * Any two distinct points can be separated by neighbourhoods, and any closed set and any point in its complement can be separated by neighbourhoods. (X is a regular Hausdorff space.) * There is a countable collection of open covers of X, such that for any closed set C and any point p in its complement there exists a cover in the collection such that every neighbourhood of p in the cover is disjoint from C. (X is a developable space.) (en)
  • En mathématiques, plus spécifiquement en topologie, un espace de Moore est un espace séparé, régulier et développable. Plus précisément, un espace topologique X est un espace de Moore si les conditions suivantes sont réunies : Le concept d'espace de Moore a été formulé par Robert Lee Moore dans la première partie du XXe siècle. Les questions se posant sur les espaces de Moore concernent généralement leur métrisabilité : quelles conditions naturelles faut-il ajouter à un espace de Moore pour s'assurer qu'il soit métrisable ? (fr)
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Link from a Wikipage to an external page
sameAs
dbp:wikiPageUsesTemplate
id
title
  • Moore space (en)
has abstract
  • In mathematics, more specifically point-set topology, a Moore space is a developable regular Hausdorff space. That is, a topological space X is a Moore space if the following conditions hold: * Any two distinct points can be separated by neighbourhoods, and any closed set and any point in its complement can be separated by neighbourhoods. (X is a regular Hausdorff space.) * There is a countable collection of open covers of X, such that for any closed set C and any point p in its complement there exists a cover in the collection such that every neighbourhood of p in the cover is disjoint from C. (X is a developable space.) Moore spaces are generally interesting in mathematics because they may be applied to prove interesting metrization theorems. The concept of a Moore space was formulated by R. L. Moore in the earlier part of the 20th century. (en)
  • En mathématiques, plus spécifiquement en topologie, un espace de Moore est un espace séparé, régulier et développable. Plus précisément, un espace topologique X est un espace de Moore si les conditions suivantes sont réunies : * X est séparé : deux points distincts admettent des voisinages disjoints ; * X est régulier : tout ensemble fermé et tout point de son complémentaire admettent des voisinages disjoints ; * X est développable : il existe une famille dénombrable de recouvrements ouverts de X, de telle sorte que pour tout ensemble fermé C et tout point p de son complémentaire, il existe un recouvrement dans telle que chaque voisinage de p dans est disjoint de C. Une telle famille est appelée un développement de X. Le concept d'espace de Moore a été formulé par Robert Lee Moore dans la première partie du XXe siècle. Les questions se posant sur les espaces de Moore concernent généralement leur métrisabilité : quelles conditions naturelles faut-il ajouter à un espace de Moore pour s'assurer qu'il soit métrisable ? (fr)
  • ( 다른 뜻에 대해서는 무어 공간 (대수적 위상수학) 문서를 참고하십시오.) 일반위상수학에서 무어 공간(Moore空間, 영어: Moore space)은 거리화 가능 공간과 유사한 성질을 갖는 위상 공간이다. 일부 추가 조건 아래, 무어 공간과 거리화 가능 공간의 조건은 서로 동치이다. (ko)
gold:hypernym
prov:wasDerivedFrom
page length (characters) of wiki page
foaf:isPrimaryTopicOf
is Link from a Wikipage to another Wikipage of
is Wikipage redirect of
is Wikipage disambiguates of
is foaf:primaryTopic of
Faceted Search & Find service v1.17_git147 as of Sep 06 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3331 as of Sep 2 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (378 GB total memory, 55 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software