About: Oscillator linewidth     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : yago:Whole100003553, within Data Space : dbpedia.demo.openlinksw.com associated with source document(s)
QRcode icon
http://dbpedia.demo.openlinksw.com/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FOscillator_linewidth

The concept of a linewidth is borrowed from laser spectroscopy. The linewidth of a laser is a measure of its phase noise. The spectrogram of a laser is produced by passing its light through a prism. The spectrogram of the output of a pure noise-free laser will consist of a single infinitely thin line. If the laser exhibits phase noise, the line will have non-zero width. The greater the phase noise, the wider the line. The same will be true with oscillators. The spectrum of the output of a noise-free oscillator has energy at each of the harmonics of the output signal, but the bandwidth of each harmonic will be zero. If the oscillator exhibits phase noise, the harmonics will not have zero bandwidth. The more phase noise the oscillator exhibits, the wider the bandwidth of each harmonic.

AttributesValues
rdf:type
rdfs:label
  • Oscillator linewidth (en)
rdfs:comment
  • The concept of a linewidth is borrowed from laser spectroscopy. The linewidth of a laser is a measure of its phase noise. The spectrogram of a laser is produced by passing its light through a prism. The spectrogram of the output of a pure noise-free laser will consist of a single infinitely thin line. If the laser exhibits phase noise, the line will have non-zero width. The greater the phase noise, the wider the line. The same will be true with oscillators. The spectrum of the output of a noise-free oscillator has energy at each of the harmonics of the output signal, but the bandwidth of each harmonic will be zero. If the oscillator exhibits phase noise, the harmonics will not have zero bandwidth. The more phase noise the oscillator exhibits, the wider the bandwidth of each harmonic. (en)
dcterms:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Link from a Wikipage to an external page
sameAs
has abstract
  • The concept of a linewidth is borrowed from laser spectroscopy. The linewidth of a laser is a measure of its phase noise. The spectrogram of a laser is produced by passing its light through a prism. The spectrogram of the output of a pure noise-free laser will consist of a single infinitely thin line. If the laser exhibits phase noise, the line will have non-zero width. The greater the phase noise, the wider the line. The same will be true with oscillators. The spectrum of the output of a noise-free oscillator has energy at each of the harmonics of the output signal, but the bandwidth of each harmonic will be zero. If the oscillator exhibits phase noise, the harmonics will not have zero bandwidth. The more phase noise the oscillator exhibits, the wider the bandwidth of each harmonic. Phase noise is a noise in the phase of the signal. Consider the following noise free signal: v(t) = Acos(2πf0t). Phase noise is added to this signal by adding a stochastic process represented by φ to the signal as follows: v(t) = Acos(2πf0t + φ(t)). If the phase noise in an oscillator stems from white noise sources, then the power spectral density (PSD) of the phase noise produced by an oscillator will be Sφ(f) = n/f 2, where n specifies the amount of noise. The PSD of the output signal would then be where n = 2cf02.Define the corner frequency fΔ = cπ f02 as the linewidth of the oscillator. Then It is more common to report oscillator phase noise as L, the ratio of the single-sideband(SSB) phase noise power to the power in the fundamental (in dBc/Hz). In this case Adding phase noise neither increases nor decreases the power of the signal. It simply redistributes the power by increasing the bandwidth over which the signal is present while decreasing the amplitude of the signal that occurs at the nominal oscillation frequency. The total noise power, as found by integrating the power spectral density over all frequencies, remains constant regardless of the amount of phase noise. This is illustrated in the figures on the right. It can be proven by integrating L over all frequencies to compute the total power of the signal. (en)
prov:wasDerivedFrom
page length (characters) of wiki page
foaf:isPrimaryTopicOf
is Link from a Wikipage to another Wikipage of
is foaf:primaryTopic of
Faceted Search & Find service v1.17_git139 as of Feb 29 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3330 as of Mar 19 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (378 GB total memory, 59 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software