About: Partition topology     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : yago:Space100028651, within Data Space : dbpedia.demo.openlinksw.com associated with source document(s)
QRcode icon
http://dbpedia.demo.openlinksw.com/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FPartition_topology

In mathematics, the partition topology is a topology that can be induced on any set X by partitioning X into disjoint subsets P; these subsets form the basis for the topology. There are two important examples which have their own names: * The odd–even topology is the topology where and Equivalently, . * The deleted integer topology is defined by letting and . The trivial partitions yield the discrete topology (each point of X is a set in P, so ) or indiscrete topology (the entire set X is in P, so ). This is not a metric unless P yields the discrete topology.

AttributesValues
rdf:type
rdfs:label
  • Partition topology (en)
rdfs:comment
  • In mathematics, the partition topology is a topology that can be induced on any set X by partitioning X into disjoint subsets P; these subsets form the basis for the topology. There are two important examples which have their own names: * The odd–even topology is the topology where and Equivalently, . * The deleted integer topology is defined by letting and . The trivial partitions yield the discrete topology (each point of X is a set in P, so ) or indiscrete topology (the entire set X is in P, so ). This is not a metric unless P yields the discrete topology. (en)
dcterms:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
sameAs
dbp:wikiPageUsesTemplate
has abstract
  • In mathematics, the partition topology is a topology that can be induced on any set X by partitioning X into disjoint subsets P; these subsets form the basis for the topology. There are two important examples which have their own names: * The odd–even topology is the topology where and Equivalently, . * The deleted integer topology is defined by letting and . The trivial partitions yield the discrete topology (each point of X is a set in P, so ) or indiscrete topology (the entire set X is in P, so ). Any set X with a partition topology generated by a partition P can be viewed as a pseudometric space with a pseudometric given by: This is not a metric unless P yields the discrete topology. The partition topology provides an important example of the independence of various separation axioms. Unless P is trivial, at least one set in P contains more than one point, and the elements of this set are topologically indistinguishable: the topology does not separate points. Hence X is not a Kolmogorov space, nor a T1 space, a Hausdorff space or an Urysohn space. In a partition topology the complement of every open set is also open, and therefore a set is open if and only if it is closed. Therefore, X is regular, completely regular, normal and completely normal. X/P is the discrete topology. (en)
prov:wasDerivedFrom
page length (characters) of wiki page
foaf:isPrimaryTopicOf
is Link from a Wikipage to another Wikipage of
is Wikipage redirect of
is foaf:primaryTopic of
Faceted Search & Find service v1.17_git139 as of Feb 29 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3330 as of Mar 19 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (378 GB total memory, 52 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software