About: Patch-sequencing     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : owl:Thing, within Data Space : dbpedia.demo.openlinksw.com associated with source document(s)
QRcode icon
http://dbpedia.demo.openlinksw.com/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FPatch-sequencing

Patch-sequencing (patch-seq) is a method designed for tackling specific problems involved in characterizing neurons. As neural tissues are one of the most transcriptomically diverse populations of cells, classifying neurons into cell types in order to understand the circuits they form is a major challenge for neuroscientists. Combining classical classification methods with single cell RNA-sequencing post-hoc has proved to be difficult and slow. By combining multiple data modalities such as electrophysiology, sequencing and microscopy, Patch-seq allows for neurons to be characterized in multiple ways simultaneously. It currently suffers from low throughput relative to other sequencing methods mainly due to the manual labor involved in achieving a successful patch-clamp recording on a neuron

AttributesValues
rdfs:label
  • Patch-sequencing (en)
rdfs:comment
  • Patch-sequencing (patch-seq) is a method designed for tackling specific problems involved in characterizing neurons. As neural tissues are one of the most transcriptomically diverse populations of cells, classifying neurons into cell types in order to understand the circuits they form is a major challenge for neuroscientists. Combining classical classification methods with single cell RNA-sequencing post-hoc has proved to be difficult and slow. By combining multiple data modalities such as electrophysiology, sequencing and microscopy, Patch-seq allows for neurons to be characterized in multiple ways simultaneously. It currently suffers from low throughput relative to other sequencing methods mainly due to the manual labor involved in achieving a successful patch-clamp recording on a neuron (en)
foaf:depiction
  • http://commons.wikimedia.org/wiki/Special:FilePath/Cortical_microcircuit.png
  • http://commons.wikimedia.org/wiki/Special:FilePath/Patch-Seq_Methodology.png
  • http://commons.wikimedia.org/wiki/Special:FilePath/Patch-Seq_data_in_machine_learning.png
  • http://commons.wikimedia.org/wiki/Special:FilePath/Patch_Clamp_Resistance_Animation.gif
dcterms:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Link from a Wikipage to an external page
sameAs
dbp:wikiPageUsesTemplate
thumbnail
has abstract
  • Patch-sequencing (patch-seq) is a method designed for tackling specific problems involved in characterizing neurons. As neural tissues are one of the most transcriptomically diverse populations of cells, classifying neurons into cell types in order to understand the circuits they form is a major challenge for neuroscientists. Combining classical classification methods with single cell RNA-sequencing post-hoc has proved to be difficult and slow. By combining multiple data modalities such as electrophysiology, sequencing and microscopy, Patch-seq allows for neurons to be characterized in multiple ways simultaneously. It currently suffers from low throughput relative to other sequencing methods mainly due to the manual labor involved in achieving a successful patch-clamp recording on a neuron. Investigations are currently underway to automate patch-clamp technology which will improve the throughput of patch-seq as well. (en)
prov:wasDerivedFrom
page length (characters) of wiki page
foaf:isPrimaryTopicOf
is Link from a Wikipage to another Wikipage of
Faceted Search & Find service v1.17_git139 as of Feb 29 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3330 as of Mar 19 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (378 GB total memory, 67 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software