In mathematics — specifically, in measure theory — a perfect measure (or, more accurately, a perfect measure space) is one that is "well-behaved" in some sense. Intuitively, a perfect measure μ is one for which, if we consider the pushforward measure on the real line R, then every measurable set is "μ-approximately a Borel set". The notion of perfectness is closely related to tightness of measures: indeed, in metric spaces, tight measures are always perfect.
Attributes | Values |
---|
rdf:type
| |
rdfs:label
| - Perfect measure (en)
- Miara doskonała (pl)
|
rdfs:comment
| - In mathematics — specifically, in measure theory — a perfect measure (or, more accurately, a perfect measure space) is one that is "well-behaved" in some sense. Intuitively, a perfect measure μ is one for which, if we consider the pushforward measure on the real line R, then every measurable set is "μ-approximately a Borel set". The notion of perfectness is closely related to tightness of measures: indeed, in metric spaces, tight measures are always perfect. (en)
- Miara doskonała – miara skończona, która w pewnym sensie może być opisana przez wartości na przeciwobrazach borelowskich podzbiorów prostej poprzez funkcje mierzalne. Miary doskonałe są obiektami porządnymi z punktu widzenia teorii miary; pojawiają się często w kontekście całkowania funkcji o wartościach w przestrzeniach funkcyjnych (np. w przestrzeniach Banacha). (pl)
|
dct:subject
| |
Wikipage page ID
| |
Wikipage revision ID
| |
Link from a Wikipage to another Wikipage
| |
sameAs
| |
dbp:wikiPageUsesTemplate
| |
first
| |
id
| |
last
| |
title
| |
has abstract
| - In mathematics — specifically, in measure theory — a perfect measure (or, more accurately, a perfect measure space) is one that is "well-behaved" in some sense. Intuitively, a perfect measure μ is one for which, if we consider the pushforward measure on the real line R, then every measurable set is "μ-approximately a Borel set". The notion of perfectness is closely related to tightness of measures: indeed, in metric spaces, tight measures are always perfect. (en)
- Miara doskonała – miara skończona, która w pewnym sensie może być opisana przez wartości na przeciwobrazach borelowskich podzbiorów prostej poprzez funkcje mierzalne. Miary doskonałe są obiektami porządnymi z punktu widzenia teorii miary; pojawiają się często w kontekście całkowania funkcji o wartościach w przestrzeniach funkcyjnych (np. w przestrzeniach Banacha). (pl)
|
gold:hypernym
| |
prov:wasDerivedFrom
| |
page length (characters) of wiki page
| |
foaf:isPrimaryTopicOf
| |
is foaf:primaryTopic
of | |