About: Perfect measure     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : dbo:Person, within Data Space : dbpedia.demo.openlinksw.com associated with source document(s)
QRcode icon
http://dbpedia.demo.openlinksw.com/c/823EX3tTTm

In mathematics — specifically, in measure theory — a perfect measure (or, more accurately, a perfect measure space) is one that is "well-behaved" in some sense. Intuitively, a perfect measure μ is one for which, if we consider the pushforward measure on the real line R, then every measurable set is "μ-approximately a Borel set". The notion of perfectness is closely related to tightness of measures: indeed, in metric spaces, tight measures are always perfect.

AttributesValues
rdf:type
rdfs:label
  • Perfect measure (en)
  • Miara doskonała (pl)
rdfs:comment
  • In mathematics — specifically, in measure theory — a perfect measure (or, more accurately, a perfect measure space) is one that is "well-behaved" in some sense. Intuitively, a perfect measure μ is one for which, if we consider the pushforward measure on the real line R, then every measurable set is "μ-approximately a Borel set". The notion of perfectness is closely related to tightness of measures: indeed, in metric spaces, tight measures are always perfect. (en)
  • Miara doskonała – miara skończona, która w pewnym sensie może być opisana przez wartości na przeciwobrazach borelowskich podzbiorów prostej poprzez funkcje mierzalne. Miary doskonałe są obiektami porządnymi z punktu widzenia teorii miary; pojawiają się często w kontekście całkowania funkcji o wartościach w przestrzeniach funkcyjnych (np. w przestrzeniach Banacha). (pl)
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
sameAs
dbp:wikiPageUsesTemplate
first
  • V.V. (en)
id
  • P/p072070 (en)
last
  • Sazonov (en)
title
  • Perfect measure (en)
has abstract
  • In mathematics — specifically, in measure theory — a perfect measure (or, more accurately, a perfect measure space) is one that is "well-behaved" in some sense. Intuitively, a perfect measure μ is one for which, if we consider the pushforward measure on the real line R, then every measurable set is "μ-approximately a Borel set". The notion of perfectness is closely related to tightness of measures: indeed, in metric spaces, tight measures are always perfect. (en)
  • Miara doskonała – miara skończona, która w pewnym sensie może być opisana przez wartości na przeciwobrazach borelowskich podzbiorów prostej poprzez funkcje mierzalne. Miary doskonałe są obiektami porządnymi z punktu widzenia teorii miary; pojawiają się często w kontekście całkowania funkcji o wartościach w przestrzeniach funkcyjnych (np. w przestrzeniach Banacha). (pl)
gold:hypernym
prov:wasDerivedFrom
page length (characters) of wiki page
foaf:isPrimaryTopicOf
is foaf:primaryTopic of
Faceted Search & Find service v1.17_git147 as of Sep 06 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3331 as of Sep 2 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (378 GB total memory, 50 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software