In mathematics, probabilistic metric spaces are a generalization of metric spaces where the distance no longer takes values in the non-negative real numbers R ≥ 0, but in distribution functions. Let D+ be the set of all probability distribution functions F such that F(0) = 0 (F is a nondecreasing, left continuous mapping from R into [0, 1] such that max(F) = 1). Then given a non-empty set S and a function F: S × S → D+ where we denote F(p, q) by Fp,q for every (p, q) ∈ S × S, the ordered pair (S, F) is said to be a probabilistic metric space if:
Attributes | Values |
---|---|
rdfs:label |
|
rdfs:comment |
|
foaf:depiction | |
dct:subject | |
Wikipage page ID |
|
Wikipage revision ID |
|
Link from a Wikipage to another Wikipage |
|
sameAs | |
dbp:wikiPageUsesTemplate | |
thumbnail | |
has abstract |
|
gold:hypernym | |
prov:wasDerivedFrom | |
page length (characters) of wiki page |
|
foaf:isPrimaryTopicOf | |
is Link from a Wikipage to another Wikipage of | |
is foaf:primaryTopic of |