In convex analysis and the calculus of variations, both branches of mathematics, a pseudoconvex function is a function that behaves like a convex function with respect to finding its local minima, but need not actually be convex. Informally, a differentiable function is pseudoconvex if it is increasing in any direction where it has a positive directional derivative. The property must hold in all of the function domain, and not only for nearby points.
Attributes | Values |
---|
rdf:type
| |
rdfs:label
| - Pseudokonvexe Funktion (de)
- Pseudoconvex function (en)
- Псевдовыпуклая функция (ru)
|
rdfs:comment
| - In convex analysis and the calculus of variations, both branches of mathematics, a pseudoconvex function is a function that behaves like a convex function with respect to finding its local minima, but need not actually be convex. Informally, a differentiable function is pseudoconvex if it is increasing in any direction where it has a positive directional derivative. The property must hold in all of the function domain, and not only for nearby points. (en)
- Псевдовыпуклая функция — это функция, которая ведёт себя подобно выпуклой функции с точки зрения нахождения её локального минимума, но не обязательно выпукла. Неформально, дифференцируемая функция псевдовыпукла, если она возрастает в любом направлении, где имеет положительную производную по направлению. (ru)
- Pseudokonvexe Funktionen spielen in der nichtlinearen Optimierung eine entscheidende Rolle. Die starke Voraussetzung der Konvexität an Zielfunktionen oder Nebenbedingungen ist in vielen Fällen nicht erfüllt. Mit abschwächenden Konvexitätsbegriffen wie Quasikonvexität oder Pseudokonvexität versucht man dann gewisse Eigenschaften zu retten, um sie in der Algorithmik einzusetzen.Im Folgenden sei eine reellwertige Funktion auf einer offenen Teilmenge differenzierbar. Falls die Funktion die folgende Eigenschaft erfüllt, so heißt sie pseudokonvex:Für alle gilt: Aus folgt . Gilt sogar Aus folgt . (de)
|
foaf:depiction
| |
dcterms:subject
| |
Wikipage page ID
| |
Wikipage revision ID
| |
Link from a Wikipage to another Wikipage
| |
sameAs
| |
dbp:wikiPageUsesTemplate
| |
thumbnail
| |
has abstract
| - Pseudokonvexe Funktionen spielen in der nichtlinearen Optimierung eine entscheidende Rolle. Die starke Voraussetzung der Konvexität an Zielfunktionen oder Nebenbedingungen ist in vielen Fällen nicht erfüllt. Mit abschwächenden Konvexitätsbegriffen wie Quasikonvexität oder Pseudokonvexität versucht man dann gewisse Eigenschaften zu retten, um sie in der Algorithmik einzusetzen.Im Folgenden sei eine reellwertige Funktion auf einer offenen Teilmenge differenzierbar. Falls die Funktion die folgende Eigenschaft erfüllt, so heißt sie pseudokonvex:Für alle gilt: Aus folgt . Gilt sogar Aus und folgt . so nennt man die Funktion strikt pseudokonvex.Dabei bezeichnet den Gradienten von an der Stelle . Ist (also ) so lautet die Bedingung zur Pseudokonvexität einfach: Aus folgt . Eine Funktion heißt pseudokonkav, wenn das Negative der Funktion pseudokonvex ist. (de)
- In convex analysis and the calculus of variations, both branches of mathematics, a pseudoconvex function is a function that behaves like a convex function with respect to finding its local minima, but need not actually be convex. Informally, a differentiable function is pseudoconvex if it is increasing in any direction where it has a positive directional derivative. The property must hold in all of the function domain, and not only for nearby points. (en)
- Псевдовыпуклая функция — это функция, которая ведёт себя подобно выпуклой функции с точки зрения нахождения её локального минимума, но не обязательно выпукла. Неформально, дифференцируемая функция псевдовыпукла, если она возрастает в любом направлении, где имеет положительную производную по направлению. (ru)
|
gold:hypernym
| |
prov:wasDerivedFrom
| |
page length (characters) of wiki page
| |
foaf:isPrimaryTopicOf
| |
is Link from a Wikipage to another Wikipage
of | |
is Wikipage redirect
of | |
is foaf:primaryTopic
of | |