In mathematics, a pseudogroup is a set of diffeomorphisms between open sets of a space, satisfying group-like and sheaf-like properties. It is a generalisation of the concept of a group, originating however from the geometric approach of Sophus Lie to investigate symmetries of differential equations, rather than out of abstract algebra (such as quasigroup, for example). The modern theory of pseudogroups was developed by Élie Cartan in the early 1900s.
Attributes | Values |
---|
rdf:type
| |
rdfs:label
| - Pseudogroup (en)
- Псевдогруппа преобразований (ru)
- Псевдогрупа перетворень (uk)
|
rdfs:comment
| - In mathematics, a pseudogroup is a set of diffeomorphisms between open sets of a space, satisfying group-like and sheaf-like properties. It is a generalisation of the concept of a group, originating however from the geometric approach of Sophus Lie to investigate symmetries of differential equations, rather than out of abstract algebra (such as quasigroup, for example). The modern theory of pseudogroups was developed by Élie Cartan in the early 1900s. (en)
- Псевдогруппа преобразований гладкого многообразия —семейство диффеоморфизмов открытых подмножеств многообразия в , замкнутое относительно композиции отображений, перехода к обратному отображению, а также сужения и склейки отображений. (ru)
- Псевдогрупа перетворень гладкого многовида — сімейство дифеоморфізмів відкритих підмножин многовида у , замкнуте відносно композиції відображень, переходу до оберненого відображення, а також звуження та склейки відображень. (uk)
|
dct:subject
| |
Wikipage page ID
| |
Wikipage revision ID
| |
Link from a Wikipage to another Wikipage
| |
sameAs
| |
dbp:wikiPageUsesTemplate
| |
author
| |
id
| |
title
| |
has abstract
| - In mathematics, a pseudogroup is a set of diffeomorphisms between open sets of a space, satisfying group-like and sheaf-like properties. It is a generalisation of the concept of a group, originating however from the geometric approach of Sophus Lie to investigate symmetries of differential equations, rather than out of abstract algebra (such as quasigroup, for example). The modern theory of pseudogroups was developed by Élie Cartan in the early 1900s. (en)
- Псевдогруппа преобразований гладкого многообразия —семейство диффеоморфизмов открытых подмножеств многообразия в , замкнутое относительно композиции отображений, перехода к обратному отображению, а также сужения и склейки отображений. (ru)
- Псевдогрупа перетворень гладкого многовида — сімейство дифеоморфізмів відкритих підмножин многовида у , замкнуте відносно композиції відображень, переходу до оберненого відображення, а також звуження та склейки відображень. (uk)
|
prov:wasDerivedFrom
| |
page length (characters) of wiki page
| |
foaf:isPrimaryTopicOf
| |
is Link from a Wikipage to another Wikipage
of | |