In mathematics, a quasicircle is a Jordan curve in the complex plane that is the image of a circle under a quasiconformal mapping of the plane onto itself. Originally introduced independently by and , in the older literature (in German) they were referred to as quasiconformal curves, a terminology which also applied to arcs. In complex analysis and geometric function theory, quasicircles play a fundamental role in the description of the universal Teichmüller space, through quasisymmetric homeomorphisms of the circle. Quasicircles also play an important role in complex dynamical systems.
Attributes | Values |
---|
rdf:type
| |
rdfs:label
| - Cuasicírculo (es)
- Quasicircle (en)
|
rdfs:comment
| - En matemáticas, un cuasicírculo es una curva de Jordan en el plano complejo, que es la imagen de una circunferencia sometida a una del plano sobre sí mismo. Originalmente introducidas de forma independiente por y , en la bibliografía más antigua (en alemán) se las denominaba curvas cuasiconformales, una terminología que también se aplicaba a los arcos. En análisis complejo y , los cuasicírculos juegan un papel fundamental en la descripción del , a través de los del círculo. Los cuasicírculos también juegan un papel importante en los sistemas dinámicos holomorfos. (es)
- In mathematics, a quasicircle is a Jordan curve in the complex plane that is the image of a circle under a quasiconformal mapping of the plane onto itself. Originally introduced independently by and , in the older literature (in German) they were referred to as quasiconformal curves, a terminology which also applied to arcs. In complex analysis and geometric function theory, quasicircles play a fundamental role in the description of the universal Teichmüller space, through quasisymmetric homeomorphisms of the circle. Quasicircles also play an important role in complex dynamical systems. (en)
|
foaf:depiction
| |
dct:subject
| |
Wikipage page ID
| |
Wikipage revision ID
| |
Link from a Wikipage to another Wikipage
| |
Link from a Wikipage to an external page
| |
sameAs
| |
dbp:wikiPageUsesTemplate
| |
thumbnail
| |
has abstract
| - En matemáticas, un cuasicírculo es una curva de Jordan en el plano complejo, que es la imagen de una circunferencia sometida a una del plano sobre sí mismo. Originalmente introducidas de forma independiente por y , en la bibliografía más antigua (en alemán) se las denominaba curvas cuasiconformales, una terminología que también se aplicaba a los arcos. En análisis complejo y , los cuasicírculos juegan un papel fundamental en la descripción del , a través de los del círculo. Los cuasicírculos también juegan un papel importante en los sistemas dinámicos holomorfos. (es)
- In mathematics, a quasicircle is a Jordan curve in the complex plane that is the image of a circle under a quasiconformal mapping of the plane onto itself. Originally introduced independently by and , in the older literature (in German) they were referred to as quasiconformal curves, a terminology which also applied to arcs. In complex analysis and geometric function theory, quasicircles play a fundamental role in the description of the universal Teichmüller space, through quasisymmetric homeomorphisms of the circle. Quasicircles also play an important role in complex dynamical systems. (en)
|
gold:hypernym
| |
prov:wasDerivedFrom
| |
page length (characters) of wiki page
| |
foaf:isPrimaryTopicOf
| |
is Link from a Wikipage to another Wikipage
of | |
is Wikipage redirect
of | |
is foaf:primaryTopic
of | |