About: Quasicircle     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : yago:WikicatFractals, within Data Space : dbpedia.demo.openlinksw.com associated with source document(s)
QRcode icon
http://dbpedia.demo.openlinksw.com/c/6PvCtYiQno

In mathematics, a quasicircle is a Jordan curve in the complex plane that is the image of a circle under a quasiconformal mapping of the plane onto itself. Originally introduced independently by and , in the older literature (in German) they were referred to as quasiconformal curves, a terminology which also applied to arcs. In complex analysis and geometric function theory, quasicircles play a fundamental role in the description of the universal Teichmüller space, through quasisymmetric homeomorphisms of the circle. Quasicircles also play an important role in complex dynamical systems.

AttributesValues
rdf:type
rdfs:label
  • Cuasicírculo (es)
  • Quasicircle (en)
rdfs:comment
  • En matemáticas, un cuasicírculo es una curva de Jordan en el plano complejo, que es la imagen de una circunferencia sometida a una del plano sobre sí mismo. Originalmente introducidas de forma independiente por y , en la bibliografía más antigua (en alemán) se las denominaba curvas cuasiconformales, una terminología que también se aplicaba a los arcos.​​ En análisis complejo y , los cuasicírculos juegan un papel fundamental en la descripción del , a través de los del círculo. Los cuasicírculos también juegan un papel importante en los sistemas dinámicos holomorfos. (es)
  • In mathematics, a quasicircle is a Jordan curve in the complex plane that is the image of a circle under a quasiconformal mapping of the plane onto itself. Originally introduced independently by and , in the older literature (in German) they were referred to as quasiconformal curves, a terminology which also applied to arcs. In complex analysis and geometric function theory, quasicircles play a fundamental role in the description of the universal Teichmüller space, through quasisymmetric homeomorphisms of the circle. Quasicircles also play an important role in complex dynamical systems. (en)
foaf:depiction
  • http://commons.wikimedia.org/wiki/Special:FilePath/Douady_rabbit.png
  • http://commons.wikimedia.org/wiki/Special:FilePath/Flocke.png
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Link from a Wikipage to an external page
sameAs
dbp:wikiPageUsesTemplate
thumbnail
has abstract
  • En matemáticas, un cuasicírculo es una curva de Jordan en el plano complejo, que es la imagen de una circunferencia sometida a una del plano sobre sí mismo. Originalmente introducidas de forma independiente por y , en la bibliografía más antigua (en alemán) se las denominaba curvas cuasiconformales, una terminología que también se aplicaba a los arcos.​​ En análisis complejo y , los cuasicírculos juegan un papel fundamental en la descripción del , a través de los del círculo. Los cuasicírculos también juegan un papel importante en los sistemas dinámicos holomorfos. (es)
  • In mathematics, a quasicircle is a Jordan curve in the complex plane that is the image of a circle under a quasiconformal mapping of the plane onto itself. Originally introduced independently by and , in the older literature (in German) they were referred to as quasiconformal curves, a terminology which also applied to arcs. In complex analysis and geometric function theory, quasicircles play a fundamental role in the description of the universal Teichmüller space, through quasisymmetric homeomorphisms of the circle. Quasicircles also play an important role in complex dynamical systems. (en)
gold:hypernym
prov:wasDerivedFrom
page length (characters) of wiki page
foaf:isPrimaryTopicOf
is Link from a Wikipage to another Wikipage of
is Wikipage redirect of
is foaf:primaryTopic of
Faceted Search & Find service v1.17_git147 as of Sep 06 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3331 as of Sep 2 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (378 GB total memory, 52 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software