In mathematics, the Quillen–Lichtenbaum conjecture is a conjecture relating étale cohomology to algebraic K-theory introduced by , p. 175), who was inspired by earlier conjectures of . and proved the Quillen–Lichtenbaum conjecture at the prime 2 for some number fields. Voevodsky, using some important results of Markus Rost, has proved the Bloch–Kato conjecture, which implies the Quillen–Lichtenbaum conjecture for all primes.
Attributes | Values |
---|
rdfs:label
| - Quillen–Lichtenbaum conjecture (en)
- Quillen–Lichtenbaums förmodan (sv)
|
rdfs:comment
| - In mathematics, the Quillen–Lichtenbaum conjecture is a conjecture relating étale cohomology to algebraic K-theory introduced by , p. 175), who was inspired by earlier conjectures of . and proved the Quillen–Lichtenbaum conjecture at the prime 2 for some number fields. Voevodsky, using some important results of Markus Rost, has proved the Bloch–Kato conjecture, which implies the Quillen–Lichtenbaum conjecture for all primes. (en)
- Inom matematiken är Quillen–Lichtenbaums förmodan en förmodan som relaterar till algebraisk K-teori introducerad av , p. 175), som inspirerades av tidigare förmodanden av ). ) and ) bevisade förmodan vid primtalet 2 för vissa talkroppar. Rost och Voevodsky har meddelat att de har bevisat , av vilket Quillen–Lichtenbaums förmodan följer för alla primtal. (sv)
|
dct:subject
| |
Wikipage page ID
| |
Wikipage revision ID
| |
Link from a Wikipage to another Wikipage
| |
Link from a Wikipage to an external page
| |
sameAs
| |
dbp:wikiPageUsesTemplate
| |
has abstract
| - In mathematics, the Quillen–Lichtenbaum conjecture is a conjecture relating étale cohomology to algebraic K-theory introduced by , p. 175), who was inspired by earlier conjectures of . and proved the Quillen–Lichtenbaum conjecture at the prime 2 for some number fields. Voevodsky, using some important results of Markus Rost, has proved the Bloch–Kato conjecture, which implies the Quillen–Lichtenbaum conjecture for all primes. (en)
- Inom matematiken är Quillen–Lichtenbaums förmodan en förmodan som relaterar till algebraisk K-teori introducerad av , p. 175), som inspirerades av tidigare förmodanden av ). ) and ) bevisade förmodan vid primtalet 2 för vissa talkroppar. Rost och Voevodsky har meddelat att de har bevisat , av vilket Quillen–Lichtenbaums förmodan följer för alla primtal. (sv)
|
gold:hypernym
| |
prov:wasDerivedFrom
| |
page length (characters) of wiki page
| |
foaf:isPrimaryTopicOf
| |
is rdfs:seeAlso
of | |
is Link from a Wikipage to another Wikipage
of | |
is Wikipage redirect
of | |
is foaf:primaryTopic
of | |