About: Bergman kernel     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : owl:Thing, within Data Space : dbpedia.demo.openlinksw.com associated with source document(s)
QRcode icon
http://dbpedia.demo.openlinksw.com/c/d8TQD5t9h

In functional analysis (a branch of mathematics), a reproducing kernel Hilbert space (RKHS) is a Hilbert space of functions in which point evaluation is a continuous linear functional. Roughly speaking, this means that if two functions and in the RKHS are close in norm, i.e., is small, then and are also pointwise close, i.e., is small for all . The converse does not need to be true. It is not entirely straightforward to construct a Hilbert space of functions which is not an RKHS. Some examples, however, have been found.

AttributesValues
rdfs:label
  • Espace de Hilbert à noyau reproduisant (fr)
  • 재생핵 힐베르트 공간 (ko)
  • Reproducing kernel Hilbert space (en)
  • Przestrzeń Hilberta z jądrem reprodukującym (pl)
rdfs:comment
  • 함수해석학에서, 재생핵 힐베르트 공간(再生核Hilbert空間, 영어: reproducing kernel Hilbert space)은 값매김 연산자가 유계 작용소인, 함수로 구성된 힐베르트 공간이다. 함수의 동치류로 구성된 르베그 공간 따위와 달리, 재생핵 힐베르트 공간은 함수로 구성되어야 한다. (르베그 공간의 경우, 주어진 점에서 함수 동치류의 원소들이 임의의 값을 가질 수 있어 값매김 연산자를 정의할 수 없다.) (ko)
  • In functional analysis (a branch of mathematics), a reproducing kernel Hilbert space (RKHS) is a Hilbert space of functions in which point evaluation is a continuous linear functional. Roughly speaking, this means that if two functions and in the RKHS are close in norm, i.e., is small, then and are also pointwise close, i.e., is small for all . The converse does not need to be true. It is not entirely straightforward to construct a Hilbert space of functions which is not an RKHS. Some examples, however, have been found. (en)
  • En analyse fonctionnelle, un espace de Hilbert à noyau reproduisant est un espace de Hilbert de fonctions pour lequel toutes les applications sont des formes linéaires continues. De manière équivalente, il existe des espaces qu'on peut définir par des noyaux reproduisants. Le sujet a été originellement et simultanément développé par Nachman Aronszajn et Stefan Bergman en 1950. Les espaces de Hilbert à noyau reproduisant sont parfois désignés sous l’acronyme issu du titre anglais RKHS, pour Reproducing Kernel Hilbert Space. (fr)
  • W analizie funkcjonalnej (gałąź matematyki) przestrzeń Hilberta z jądrem reprodukującym (ang. Reproducing Kernel Hilbert Space, RKHS) jest przestrzenią Hilberta z iloczynem skalarnym funkcji określonych na zbiorze U o wartościach w ciele liczb rzeczywistych lub zespolonych, w której wszystkie funkcjonały ewaluacji, tzn. funkcjonały są ciągłe, tzn. dla każdego istnieje taka stała , że , gdzie stała nie zależy of wyboru funkcji . Jeśli funkcjonały ewaluacji są ciągłe, to na mocy Twierdzenia Riesza dla każdego istnieje takie , że dla każdej funkcji . Funkcję określoną w następujący sposób: (pl)
foaf:depiction
  • http://commons.wikimedia.org/wiki/Special:FilePath/Different_Views_on_RKHS.png
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Link from a Wikipage to an external page
sameAs
dbp:wikiPageUsesTemplate
Faceted Search & Find service v1.17_git147 as of Sep 06 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3331 as of Sep 2 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (378 GB total memory, 52 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software