About: Ricci calculus     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : yago:Variable105857459, within Data Space : dbpedia.demo.openlinksw.com associated with source document(s)
QRcode icon
http://dbpedia.demo.openlinksw.com/c/ZLbdHYLeN

In mathematics, Ricci calculus constitutes the rules of index notation and manipulation for tensors and tensor fields on a differentiable manifold, with or without a metric tensor or connection. It is also the modern name for what used to be called the absolute differential calculus (the foundation of tensor calculus), developed by Gregorio Ricci-Curbastro in 1887–1896, and subsequently popularized in a paper written with his pupil Tullio Levi-Civita in 1900. Jan Arnoldus Schouten developed the modern notation and formalism for this mathematical framework, and made contributions to the theory, during its applications to general relativity and differential geometry in the early twentieth century.

AttributesValues
rdf:type
rdfs:label
  • حساب ريتشي (ar)
  • Ricci calculus (en)
  • Cálculo de Ricci (pt)
rdfs:comment
  • في الرياضيات، يشكل حساب ريتشي قواعد تدوين الفهرس والتلاعب في مجالات الموتر والموتر. وهو أيضًا الاسم الحديث لما كان يُطلق عليه حساب التفاضل والتكامل المطلق (أساس حساب الموتر)، الذي طوره غريغوريو ريتشي في 1887-1896، وتم تعميمه لاحقًا في ورقة مكتوبة مع تلميذه توليو ليفي تشيفيتا في 1900. طور جان أرنولدوس شوتن الرموز الحديثة والشكلية لهذا الإطار الرياضي، وقدم مساهمات في النظرية، خلال تطبيقاته للنسبية العامة والهندسة التفاضلية في أوائل القرن العشرين. (ar)
  • Em matemática, o cálculo de Ricci constitui as regras da notação de índice e manipulação de tensores e campos tensoriais. Também é o nome moderno para o que costumava ser chamado de cálculo diferencial absoluto (a base do cálculo tensorial), desenvolvido por Gregorio Ricci-Curbastro em 1887-1896, e posteriormente popularizado em um artigo escrito com seu pupilo Tullio Levi-Civita em 1900. Jan Arnoldus Schouten desenvolveu a notação moderna e o formalismo para esta estrutura matemática, e fez contribuições com a teoria, durante suas aplicações à relatividade geral e geometria diferencial no início do século XX. (pt)
  • In mathematics, Ricci calculus constitutes the rules of index notation and manipulation for tensors and tensor fields on a differentiable manifold, with or without a metric tensor or connection. It is also the modern name for what used to be called the absolute differential calculus (the foundation of tensor calculus), developed by Gregorio Ricci-Curbastro in 1887–1896, and subsequently popularized in a paper written with his pupil Tullio Levi-Civita in 1900. Jan Arnoldus Schouten developed the modern notation and formalism for this mathematical framework, and made contributions to the theory, during its applications to general relativity and differential geometry in the early twentieth century. (en)
rdfs:seeAlso
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Faceted Search & Find service v1.17_git147 as of Sep 06 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3331 as of Sep 2 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (378 GB total memory, 53 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software