In algebra, an SBI ring is a ring R (with identity) such that every idempotent of R modulo the Jacobson radical can be lifted to R. The abbreviation SBI was introduced by Irving Kaplansky and stands for "suitable for building idempotent elements" .
Attributes | Values |
---|---|
rdfs:label |
|
rdfs:comment |
|
dcterms:subject | |
Wikipage page ID |
|
Wikipage revision ID |
|
Link from a Wikipage to another Wikipage | |
sameAs | |
dbp:wikiPageUsesTemplate | |
has abstract |
|
gold:hypernym | |
prov:wasDerivedFrom | |
page length (characters) of wiki page |
|
foaf:isPrimaryTopicOf | |
is Link from a Wikipage to another Wikipage of | |
is Wikipage redirect of | |
is foaf:primaryTopic of |